已知函數(shù),且對(duì)任意的實(shí)數(shù)都有成立.
(1)求實(shí)數(shù)的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間上是增函數(shù).
(1)(2)嚴(yán)格按照單調(diào)性定義證明即可

試題分析:(1)由得,
,
整理得:,                                                     4分
由于對(duì)任意的都成立,所以.                                         6分
(2) 根據(jù)(1)可知,                                       8分
下面證明函數(shù)在區(qū)間上是增函數(shù).設(shè)
    12分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240057244811216.png" style="vertical-align:middle;" />
所以
故函數(shù)在區(qū)間上是增函數(shù).                                       14分
點(diǎn)評(píng):由可以得到函數(shù)圖象關(guān)于x=1對(duì)稱(chēng),所以x=1是函數(shù)的對(duì)稱(chēng)軸,利用這條性質(zhì)也可以解出a的值;另外,證明函數(shù)的單調(diào)性時(shí)要嚴(yán)格按照單調(diào)性的定義進(jìn)行證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)上的單調(diào)性,并給出證明;
(3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)。
(1)時(shí),求的最小值;
(2)若上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間為_(kāi)_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=2x4 -x2+1的遞減區(qū)間是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),對(duì)任意的,總存在,使得不等式成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)是定義在(0,+)上的非負(fù)可導(dǎo)函數(shù),且滿足。對(duì)任意正數(shù)a、b,若a<b,則必有(   )
A.a(chǎn)f(b)≤bf(a)B.bf(a)≤af(b)
C.a(chǎn)f(a)≤f(b)D. bf(b)≤f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)如果當(dāng)時(shí),恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在區(qū)間單調(diào)遞增,則實(shí)數(shù)的取值范圍為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案