(本題滿分14分)已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)如果當時,恒成立,求實數(shù)的范圍.
(1) ① 當時,上是增函數(shù)
② 當時,所以上是增函數(shù)
③ 當時, 所以的單調(diào)遞增區(qū)間;的單調(diào)遞減區(qū)間
(2)

試題分析:(1)定義域為    2分

① 當時,對稱軸,,所以上是增函數(shù)                                    4分
② 當時,,所以上是增函數(shù)                6分
③ 當時,令
解得;令解得
所以的單調(diào)遞增區(qū)間;的單調(diào)遞減區(qū)間8分
(2)可化為(※)
,由(1)知:
① 當時,上是增函數(shù)
時,;所以
時,。所以
所以,當時,※式成立              12分
② 當時,是減函數(shù),所以※式不成立
綜上,實數(shù)的取值范圍是.          14分
解法二 :可化為



,

所以

由洛必達法則
所以
點評:解決該試題的關鍵是利用導數(shù)的符號判定函數(shù)單調(diào)性,同時能結合函數(shù)的單調(diào)性來求解函數(shù)的最值,解決恒成立,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

2a+1<3-2a,則實數(shù)a的取值范圍是(  ).
A.(1,+∞)B.
C.(-∞,1)D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),且對任意的實數(shù)都有成立.
(1)求實數(shù)的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)設時,求函數(shù)極大值和極小值;
(2)時討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)。
(1)當時,求的單調(diào)區(qū)間;
(2)(i)設的導函數(shù),證明:當時,在上恰有一個使得
(ii)求實數(shù)的取值范圍,使得對任意的,恒有成立。
注:為自然對數(shù)的底數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期.
(2)當時,求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)為自然對數(shù)的底數(shù)).
時,求的單調(diào)區(qū)間;若函數(shù)上無零點,求最小值;
若對任意給定的,在上總存在兩個不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,在區(qū)間上為減函數(shù)的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意正實數(shù)x,不等式恒成立,求實數(shù)k的值;
(Ⅲ)求證:.(其中

查看答案和解析>>

同步練習冊答案