已知函數(shù)f(x)=
3
sin2x+2cosx•sin(x-
π
3
)+sinxcosx.
(1)求函數(shù)y=f(x)的增區(qū)間
(2)若2f(x)-m+1=0在[
π
6
12
]有兩個(gè)相異的實(shí)根,求m的取值范圍.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由三角函數(shù)中的恒等變換應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=2sin(2x-
π
3
),由-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ,即可解得函數(shù)y=f(x)的增區(qū)間.
(2)由已知轉(zhuǎn)化為方程f(x)=
m-1
2
兩個(gè)相異的實(shí)根,即y=f(x)圖象與y=
m-1
2
圖象有兩個(gè)交點(diǎn),結(jié)合函數(shù)圖象,有1≤
m-1
2
<2,即可解得m的取值范圍.
解答: 解:(1)∵f(x)=
3
sin2x+2cosx•sin(x-
π
3
)+sinxcosx…2分
=
3
×(
1-cos2x
2
)+2cosx(
1
2
sinx-
3
2
cosx)+sinxcosx
=sin2x-
3
cos2x
=2sin(2x-
π
3
)…4分
∴由-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ,得-
π
12
+kπ≤x≤
12
+kπ(k∈Z)…6分
(2)2f(x)-m+1=0在[
π
6
,
12
]內(nèi)有兩個(gè)相異的實(shí)根,
f(x)=
m-1
2
兩個(gè)相異的實(shí)根,
即y=f(x)圖象與y=
m-1
2
圖象有兩個(gè)交點(diǎn),…8分
結(jié)合函數(shù)圖象,當(dāng)1≤
m-1
2
<2,
解得:m∈[3,5)時(shí)原方程有兩個(gè)相異的實(shí)根,
故m∈[3,5)…13分
點(diǎn)評(píng):本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為棱AB的中點(diǎn),點(diǎn)P在平面A1B1C1D1內(nèi),若D1P⊥平面PCE,試求線段D1P的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形AB⊥CD,BC∥AD且BC=4,點(diǎn)M為PC中點(diǎn).
(1)求證:平面ADM⊥平面PBC;
(2)求點(diǎn)P到平面ADM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,E為棱AA1上任意一點(diǎn),F(xiàn)是CD的中點(diǎn).
(1)證明:BD⊥EC1;
(2)若AF∥平面C1DE,求
AE
A1A
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,P為線段AB上的一點(diǎn),
OP
=x
OA
+y
OB
,且
BP
=3
PA
,則( 。
A、x=
2
3
,y=
1
3
B、x=
1
3
,y=
2
3
C、x=
1
4
,y=
3
4
D、x=
3
4
,y=
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓錐的母線長(zhǎng)為2cm,底面圓的周長(zhǎng)為2πcm,則圓錐的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列給出的圖形中,繞給出的軸旋轉(zhuǎn)一周(如圖所示),能形成圓臺(tái)的是
 
(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2008年5月18日某愛心人士為一位孤兒去銀行存款a元,存的是一年定期儲(chǔ)蓄;2009年5月18日他將到期存款的本息一起取出,再加a元后,還存一年的定期儲(chǔ)蓄,此后每年5月18日都如此;假設(shè)銀行一年定期儲(chǔ)蓄的年利率r不變,直到2015年5月18日這位孤兒準(zhǔn)備上大學(xué)時(shí),他將所有的存款和利息全部取出并且資助給這位孤兒,取出的錢數(shù)共為( 。
A、a(1+r)7
B、a[(1+r)7+(1+r)]元
C、
a
r
[(1+r)7-r]元
D、
a
r
[(1+r)8-(1+r)]元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}各項(xiàng)均為正數(shù),求證:
1
a1
+
a2
+
1
a2
+
a3
+…+
1
an-1
+
an
=
n-1
an
+
a1

查看答案和解析>>

同步練習(xí)冊(cè)答案