【題目】對(duì)定義域分別為D1 , D2的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),則h(x)的單調(diào)減區(qū)間是 .
【答案】(﹣∞,1),[ ,2]
【解析】解:由題意,函數(shù)h(x)= , ∵f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),
∴h(x)的解析式h(x)= ,
當(dāng)1≤x≤2時(shí),h(x)=(x﹣2)(﹣2x+3)=﹣2x2+7x﹣6,其對(duì)稱軸為x= ,
故h(x)在[ ,2]上單調(diào)遞減,
當(dāng)x<1時(shí),h(x)=﹣2x+3為減函數(shù),故減區(qū)間為(﹣∞,1),
綜上所述h(x)的單調(diào)減區(qū)間為(﹣∞,1),[ ,2],
故答案為:(﹣∞,1),[ ,2]
由題中所給的新定義函數(shù),根據(jù)其規(guī)則結(jié)合f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),直接寫出h(x)的解析式即可得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Acos( + ),x∈R,且f( )= .
(1)求A的值;
(2)設(shè)α,β∈[0, ],f(4α+ π)=﹣ ,f(4β﹣ π)= ,求cos(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中共有8個(gè)球,其中3個(gè)紅球、2個(gè)白球、3個(gè)黑球.若從袋中任取3個(gè)球,則所取3個(gè)球中至多有1個(gè)紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:|1﹣ |≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列3個(gè)命題:
(1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(2)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2﹣8a<0且a>0;
(3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax(x≥0)的圖象經(jīng)過(guò)點(diǎn)(2, ),其中a>0且a≠1.
(1)求a的值;
(2)求函數(shù)y=f(x)(x≥0)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對(duì)任意的實(shí)數(shù)x∈[ , ],都有f(x)﹣2mx≤1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)奇函數(shù)定義在上,其導(dǎo)函數(shù)為且,當(dāng)時(shí), ,則不等式的解集為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(4﹣2x),a>0且a≠1.
(1)求函數(shù)y=f(x)﹣g(x)的定義域;
(2)求使不等式f(x)>g(x)成立的實(shí)數(shù)x的取值范圍;
(3)求函數(shù)y=2f(x)﹣g(x)﹣f(1)的零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com