直線Ax+By+C=0與圓x2+y2=4相交于M,N兩點,若C2=A2+B2,則
OM
ON
(O為坐標(biāo)原點)等于
 
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應(yīng)用,直線與圓
分析:由題意,先研究直線與圓的關(guān)系,求出圓到直線的距離,再解三角形求出∠MON,利用數(shù)量積公式即可求出
OM
ON
解答: 解:圓心到直線的距離是d=
|c|
A2+B2

又C2=A2+B2,所以d=
|c|
A2+B2
=1.
又圓的半徑是2,所以sin∠OMN=sin∠ONM=
1
2

所以∠OMN=∠ONM=30°,可得∠MON=120°.
OM
ON
=2×2×cos120°=-2.
故答案為-2.
點評:本題考查數(shù)量積的公式直線與圓相交的性質(zhì),點到直線的距離公式,屬于基本題型,較易.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x∈N|y=ln(2-x)},B={x|x(x-2)≤0},A∩B=( 。
A、{x|x≥1}
B、{x|0≤x<2}
C、{1}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為棱DD1和AB上的點,則下列說法正確的是
 
(填上所有正確命題的序號)
(1)A1C⊥平面B1EF;
(2)在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;
(3)△B1EF在側(cè)面BCC1B1上的正投影是面積為定值的三角形;
(4)當(dāng)E,F(xiàn)為中點時平面B1EF截該正方體所得的截面圖形是五邊形;
(5)當(dāng)E,F(xiàn)為中點時,平面B1EF與棱AD交于點P,則AP=
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近年來,隨著地方經(jīng)濟的發(fā)展,勞務(wù)輸出大省四川、河南、湖北、安徽等地的部分勞務(wù)人員選擇了回鄉(xiāng)就業(yè),因而使得沿海地區(qū)出現(xiàn)了一定程度的用工荒.今年春節(jié)過后,沿海某公司對來自上述四省的務(wù)工人員進(jìn)行了統(tǒng)計(如表):
省份 四川 河南 湖北 安徽
人數(shù) 45 60 30 15
為了更進(jìn)一步了解員工的來源情況,該公司采用分層抽樣的方法從上述四省務(wù)工人員中隨機抽取50名參加問卷調(diào)查.
(1)從參加問卷調(diào)查的50名務(wù)工人員中隨機抽取兩名,求這兩名來自同一省份的概率;
(2)在參加問卷調(diào)查的50名務(wù)工人員中,從來自四川、湖北兩省的人員中隨機抽取兩名,用ξ表示抽得四川省務(wù)工人員的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次數(shù)學(xué)考試中有三道選做題,分別為選做題1、2、3.規(guī)定每位考生必須且只須在其中選做一題.甲、乙、丙三名考生選做這一題中任意一題的可能性均為
1
3
,每位學(xué)生對每題的選擇是相互獨立的,各學(xué)生的選擇相互之間沒有影響.
(1)求這三個人選做的是同一道題的概率:
(2)設(shè)ξ為三個人中做選做題l的人數(shù),求ξ的分布列與均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠隨機抽取處12件A型產(chǎn)品和18件B型產(chǎn)品,將這30件產(chǎn)品的尺寸編成如圖所示的莖葉圖(單位:cm),若尺寸在175cm以上(包括175cm)的產(chǎn)品定義為“標(biāo)準(zhǔn)件”,尺寸在175cm以下(不包括175cm)的產(chǎn)品定義為“非標(biāo)準(zhǔn)件”
(1)如果用分層抽樣的方法從這30件“標(biāo)準(zhǔn)件”和“非標(biāo)準(zhǔn)件”中選取5件,再從這5件中選取2件,那么至少有一件是“標(biāo)準(zhǔn)件”的概率是多少?
(2)若從所有“標(biāo)準(zhǔn)件”中每次隨機抽取1件,取后不放回,抽到“A型標(biāo)準(zhǔn)件”就結(jié)束,且抽取次數(shù)不能超過3次,用X表示抽取結(jié)束時抽到“B型標(biāo)準(zhǔn)件”的個數(shù),試寫出X的分布列,并求出X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C極坐標(biāo)方程為ρ2-4ρcosθ-4ρsinθ+6=0,以極點為原點,極軸為x軸正半軸建立直角坐標(biāo)系,直線l的參數(shù)方程為
x=-2-
2
t
y=3+
2
t
(t為參數(shù)),則曲線C上的點到直線l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xcosx-sinx+1(x>0).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)記xi為f(x)的從小到大的第i(i∈N*)個零點,證明:對一切n∈N*,有
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實數(shù),函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)為f′(x),且f′(x)是偶函數(shù),則曲線y=f(x)在原點處的切線方程是
 

查看答案和解析>>

同步練習(xí)冊答案