3.人的體重是人的身體素質(zhì)的重要指標(biāo)之一.某校抽取了高二的部分學(xué)生,測出他們的體重(公斤),體重在40公斤至65公斤之間,按體重進行如下分組:第1組[40,45),第2組[45,50),第3組[50,55),第4組[55,60),第5組[60,65],并制成如圖所示的頻率分布直方圖,已知第1組與第3組的頻率之比為1:3,第3組的頻數(shù)為90.
(Ⅰ)求該校抽取的學(xué)生總數(shù)以及第2組的頻率;
(Ⅱ)學(xué)校為進一步了解學(xué)生的身體素質(zhì),在第1組、第2組、第3組中用分層抽樣的方法抽取6人進行測試.若從這6人中隨機選取2人去共同完成某項任務(wù),求這2人來自于同一組的概率.

分析 (Ⅰ)設(shè)該校抽查的學(xué)生總?cè)藬?shù)為n,第 2組、第3組的頻率分別為p2,p3,由頻率分布直方產(chǎn)求出p3,從而能求出n和從左到右第2組的頻率.
(Ⅱ)前3組的頻率之比是1:2:3,則按照分層抽樣,這6人的構(gòu)成是第1組1人(不妨設(shè)為A),第2組2人(不妨設(shè)為B1,B2),第3組3人(不妨設(shè)為C1,C2,C3),由此利用列舉法能求出這2人來自同一組的概率.

解答 (本小題滿分12分)
(Ⅰ)設(shè)該校抽查的學(xué)生總?cè)藬?shù)為n,第 2組、第3組的頻率分別為p2,p3
則p3=0.025×3×5=0.375,所以$n=\frac{90}{p_3}=240$,(3分)
由p2+0.375+(0.025+0.013+0.037)×5=1,解得p2=0.25,
所以該校抽查的學(xué)生總?cè)藬?shù)為240人,從左到右第2組的頻率為0.25.(6分)
(Ⅱ)前3組的頻率之比是1:2:3,
則按照分層抽樣,這6人的構(gòu)成是第1組1人(不妨設(shè)為A),
第2組2人(不妨設(shè)為B1,B2),第3組3人(不妨設(shè)為C1,C2,C3),
從這6人中任選兩人有:
AB1,AB2,AC1,AC2,AC3,B1B2,B1C1,B1C2,B1C3,B2C1,B2C2,B2C3,C1C2,C1C3,C2C3,共15個結(jié)果,
而這2人來自同一組的情況有B1B2,C1C2,C1C3,C2C3,共4個結(jié)果,
所以這2人來自同一組的概率p=$\frac{4}{15}$.(12分)

點評 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)在[1,+∞)上單調(diào)遞增,且f(x+1)為偶函數(shù),則( 。
A.f(0)<f($\frac{1}{2}$)B.f(-2)>f(2)C.f(-1)<f(3)D.f(-4)=f(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合$A=\left\{x\right.|\frac{x-1}{2x-1}≤0\left.{\;}\right\},B=\left\{x\right.|-3{x^2}+4x-1>0\left.{\;}\right\}$,則A∩B=(  )
A.$\left\{{x|\frac{1}{2}<x<1}\right\}$B.$\left\{{x|\frac{1}{2}≤x<1}\right\}$C.$\left\{{x|\frac{1}{3}<x<\frac{1}{2}}\right\}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2sinx(cosx+sinx)-1
(Ⅰ)求f(x)的最小正周期及最大值;
(Ⅱ)若g(x)=f(x+φ),(-$\frac{π}{2}$<φ<$\frac{π}{2}$)在x=$\frac{π}{3}$處取得最大值,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(0,-1),$\overrightarrow$=(-1,2),則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=(  )
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對于函數(shù)f(x)=3sin(2x+$\frac{π}{6}$),給出下列命題:
①圖象關(guān)于原點成中心對稱;      ②圖象關(guān)于直線x=$\frac{π}{6}$對稱;
③函數(shù)f(x)的最大值是3;      ④函數(shù)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上單調(diào)遞增.
其中所有正確命題的序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知點F(1,0),點P為平面內(nèi)的動點,過點P作直線l:x=-1的垂線,垂足為Q,且$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)設(shè)點P的軌跡C與x軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足$\overrightarrow{MA}•\overrightarrow{AB}=0$,求$|\overrightarrow{MB}|$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某汽車公司為了考查某4S店的服務(wù)態(tài)度,對到店維修保養(yǎng)的客戶進行回訪調(diào)查,每個用戶在到此店維修或保養(yǎng)后可以對該店進行打分,最高分為10分.上個月公司對該4S店的100位到店維修保養(yǎng)的客戶進行了調(diào)查,將打分的客戶按所打分值分成以下幾組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.
(Ⅰ)分別求第四、五組的頻率;
(Ⅱ)該公司在第二、三組客戶中按分層抽樣的方法抽取6名客戶進行深入調(diào)查,之后將從這6人中隨機抽取2人進行物質(zhì)獎勵,求得到獎勵的人來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線l過點P(2,3),根據(jù)下列條件分別求出直線l的方程:
(1)直線l的傾斜角為120°;
(2)l與直線x-2y+1=0垂直;
(3)l在x軸、y軸上的截距之和等于0.

查看答案和解析>>

同步練習(xí)冊答案