11.已知函數(shù)f(x)=2sinx(cosx+sinx)-1
(Ⅰ)求f(x)的最小正周期及最大值;
(Ⅱ)若g(x)=f(x+φ),(-$\frac{π}{2}$<φ<$\frac{π}{2}$)在x=$\frac{π}{3}$處取得最大值,求φ的值.

分析 (I)利用倍角公式化簡f(x)為一個角的三角函數(shù),再根據(jù)正弦函數(shù)的最小正周期的定義即可求出周期,根據(jù)三角函數(shù)的性質(zhì)即可求出最大值,
(II)可求得g(x)=$\sqrt{2}$sin(2x+2φ-$\frac{π}{4}$),利用在x=$\frac{π}{3}$處取得最大值時,2×$\frac{π}{3}$+2φ-$\frac{π}{4}$=$\frac{π}{2}$+2kπ,k∈z,求出φ.

解答 解:(Ⅰ)f(x)=2sinx(cosx+sinx)-1=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,最大值為$\sqrt{2}$,
(Ⅱ)g(x)=f(x+φ),
∴g(x)=f(x+φ)=$\sqrt{2}$sin[2(x+φ)-$\frac{π}{4}$]=$\sqrt{2}$sin(2x+2φ-$\frac{π}{4}$),
∵g(x)在x=$\frac{π}{3}$處取得最大值,
∴2×$\frac{π}{3}$+2φ-$\frac{π}{4}$=$\frac{π}{2}$+2kπ,k∈Z,
∴φ=$\frac{π}{24}$+kπ,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{24}$.

點評 本題考查了倍角的正弦、余弦函數(shù),考查了正弦函數(shù)的周期性,單調(diào)性及求法.利用三角公式化簡三角函數(shù)是解答本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.下列有關(guān)命題的說法中正確的是④.(填序號)
①命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”;
②“x=-1”是“x2-5x-6=0”的必要不充分條件;
③命題“存在x∈R,使得x2+x+1=0”的否定是“對任意的x∈R,均有x2+x+1<0”;
④命題“若x=y,則sinx=siny”的逆否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.求下列函數(shù)的定義域.
(1)y=$\frac{{\root{3}{4-x}}}{{\sqrt{x+1}}}-{x^0}${x|x>-1x≠0}
(2)y=$\sqrt{{{log}_{\frac{1}{2}}}(3x-2)}${x|$\frac{2}{3}$<x≤1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知點P(x,y)的坐標x,y滿足約束條件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤3\\ x≥0,y≥0\end{array}\right.$,且A(1,-2),則$\overrightarrow{OP}•\overrightarrow{OA}$的取值范圍為[-3,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.歐陽修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢入孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止,若銅錢是直徑為2cm的圓,中間有邊長為0.5cm的正方形孔,若你隨機向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率為$\frac{1}{4π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知$\overrightarrow{a}$=(sinx,sin(x-$\frac{π}{6}$)),$\overrightarrow$=(sinx,cos(x+$\frac{π}{3}$)),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的解析式及周期;
(2)求f(x)在x∈[-$\frac{π}{3}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.人的體重是人的身體素質(zhì)的重要指標之一.某校抽取了高二的部分學生,測出他們的體重(公斤),體重在40公斤至65公斤之間,按體重進行如下分組:第1組[40,45),第2組[45,50),第3組[50,55),第4組[55,60),第5組[60,65],并制成如圖所示的頻率分布直方圖,已知第1組與第3組的頻率之比為1:3,第3組的頻數(shù)為90.
(Ⅰ)求該校抽取的學生總數(shù)以及第2組的頻率;
(Ⅱ)學校為進一步了解學生的身體素質(zhì),在第1組、第2組、第3組中用分層抽樣的方法抽取6人進行測試.若從這6人中隨機選取2人去共同完成某項任務(wù),求這2人來自于同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.某公司為確定明年投入某產(chǎn)品廣告支出,對近5年的廣告支出m與銷售額t(單位:百萬元)進行了初步統(tǒng)計,得到下列表格中的數(shù)據(jù):
t3040p5070
m24568
經(jīng)測算,年廣告支出m和年銷售額t滿足線性回歸方程$\widehat{t}$=6.5m+17.5,則p的值為60.

查看答案和解析>>

同步練習冊答案