在某兩個(gè)正數(shù)x,y之間,若插入一個(gè)數(shù)a,使x,a,y成等差數(shù)列,若插入兩個(gè)數(shù)b,c,使x,b,c,y成等比數(shù)列,求證:(a+1)2≥(b+1)(c+1).
見(jiàn)解析
解析證明:方法一:由條件得
消去x,y即得:2a=+,且有a>0,b>0,c>0,
要證(a+1)2≥(b+1)(c+1),
只需證a+1≥,
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/15/2/1tc2l3.png" style="vertical-align:middle;" />≤=+1,
所以只需證2a≥b+c,而2a=+,
所以只需證+≥b+c,
即b3+c3≥bc(b+c),(b+c)(b2+c2-bc)≥bc(b+c),
而b+c>0,則只需證b2+c2-bc≥bc,
即(b-c)2≥0,上式顯然成立.
所以原不等式成立.
方法二:由等差、等比數(shù)列的定義知:
用x,y表示a,b,c得
所以(b+1)(c+1)=(+1)(+1)
≤
=(2x+y+3)(x+2y+3)
≤
==(a+1)2,
所以原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
用數(shù)學(xué)歸納法證明:當(dāng)n是不小于5的自然數(shù)時(shí),總有2n>n2成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a1=1,a2=4,an+2=4an+1+an,bn=,n∈N+.
(1)求b1,b2,b3的值.
(2)設(shè)cn=bnbn+1,Sn為數(shù)列{cn}的前n項(xiàng)和,求證: Sn≥17n.
(3)求證:|b2n-bn|<·.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com