已知a1=1,a2=4,an+2=4an+1+an,bn=,n∈N+.
(1)求b1,b2,b3的值.
(2)設(shè)cn=bnbn+1,Sn為數(shù)列{cn}的前n項和,求證: Sn≥17n.
(3)求證:|b2n-bn|<·.

(1)   (2) (3)見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某兩個正數(shù)x,y之間,若插入一個數(shù)a,使x,a,y成等差數(shù)列,若插入兩個數(shù)b,c,使x,b,c,y成等比數(shù)列,求證:(a+1)2≥(b+1)(c+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+b2+c2+m-1=0.
(1)求證:a2+b2+c2.
(2)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)n∈N*,求證:++…+<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求不等式的解集;
(2)若關(guān)于的不等式上無解,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=|2x-1|+|2xa|,g(x)=x+3.
(1)當(dāng)a=-2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>-1,且當(dāng)x時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

證明不等式:
(1)(5分)設(shè)求證:
(2)(5分)已知求證:
(3)(5分)已知求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實數(shù)a,b,c滿足a+b+c=2,求a2+2b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+2x.
(1)解關(guān)于x的不等式g(x)≥f(x)-|x-1|;
(2)如果對?x∈R,不等式g(x)+cf(x)-|x-1|恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案