1.已知函數(shù)f(x)=sinx,若存在x1,x2,…,xn滿足0≤x1<x2<…<xn≤nπ,n∈N+,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12,(m≥2,m∈N+),當m取最小值時,n的最小值為6.

分析 由正弦函數(shù)的有界性可得,對任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,要使m取得最小值,盡可能多讓xi(i=1,2,3,…,m)取得最高點,然后作圖可得滿足條件的最小m值.

解答 解:y=sinx對任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,
要使m取得最小值,盡可能多讓xi(i=1,2,3,…,m)取得最高點,
考慮0≤x1<x2<…<xm≤nπ,|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12,
則按下圖取值即可滿足條件,

∴m的最小值為8,此時n的值為6.
故答案為:6.

點評 本題主要考查正弦函數(shù)的圖象和性質,考查分析問題和解決問題的能力,考查數(shù)學轉化思想方法,正確理解對任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2是解答該題的關鍵,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.設Sn為數(shù)列{an}的前n項和,Sn+$\frac{1}{{2}^{n}}$=(-1)nan(n∈N*),則數(shù)列{Sn}的前9項和為-$\frac{341}{1024}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.直線x-y-3=0與圓(x-1)2+y2=2的位置關系( 。
A.相離B.相切C.相交D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.等比數(shù)列{an}中,已知a1=3,an=96,其前n頂和Sn=189,則n的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知sin($\frac{π}{4}$-θ)=$\frac{5}{13}$,0<θ<$\frac{π}{4}$,求cos2θ,cos($\frac{π}{4}$+θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.以橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的頂點為焦點,焦點為頂點的雙曲線C,其左右焦點分別為F1,F(xiàn)2,已知點M(2,1),雙曲線C上的點P(x0,y0)(x0>0,y0>0)滿足$\frac{{\overrightarrow{P{F_1}}•\overrightarrow{M{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}=\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{M{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,則${S_{△PM{F_1}}}-{S_{△PM{F_2}}}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知角A為銳角,則f(A)=$\frac{[cos(π-2A)-1]sin(π+\frac{A}{2})sin(\frac{π}{2}-\frac{A}{2})}{si{n}^{2}(\frac{π}{2}-\frac{A}{2})-si{n}^{2}(π-\frac{A}{2})}$+cos2A的最大值為( 。
A.$\frac{\sqrt{2}+1}{2}$B.$\frac{\sqrt{2}-1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{\sqrt{3}+1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設x1,x2,x3,x4,x5是1,2,3,4,5的任一排列,則x1+2x2+3x3+4x4+5x5的最小值是35.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.sin(-435°)的值等于$-\frac{\sqrt{2}+\sqrt{6}}{4}$.

查看答案和解析>>

同步練習冊答案