【題目】已知函數(shù)f(x)=Asin(x+ ),x∈R,且f( )= .
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).
【答案】
(1)解:∵函數(shù)f(x)=Asin(x+ ),x∈R,且f( )= .
∴Asin( + )=Asin =A = ,
∴A= .
(2)解:由(1)可得 f(x)= sin(x+ ),
∴f(θ)+f(﹣θ)= sin(θ+ )+ sin(﹣θ+ )=2 sin cosθ= cosθ= ,
∴cosθ= ,再由 θ∈(0, ),可得sinθ= .
∴f( ﹣θ)= sin( ﹣θ+ )= sin(π﹣θ)= sinθ= .
【解析】(1)根據(jù)題意f( )=,代入f(x)的解析式可得出A的值,(2) 根據(jù)f(θ)+f(﹣θ)=,代入使用兩角和與差的正弦公式可解得cosθ,再由同角的三角函數(shù)關(guān)系得出sinθ,由誘導公式對f( ﹣θ)進行化簡可得答案.
【考點精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識,掌握兩角和與差的正弦公式:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M,N分別為AB,BC的中點.
(1)求證:平面B1MN⊥平面BB1D1D;
(2)當點P在DD1上運動時,是否都有MN∥平面A1C1P,證明你的結(jié)論;
(3)若P是D1D的中點,試判斷PB與平面B1MN是否垂直?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=lnf′(x)的單調(diào)減區(qū)間為( )
A.[0,3)
B.[﹣2,3]
C.(﹣∞,﹣2)
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,將y=f(x)的圖象向右平移 個單位長度后得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)y=g(x)的解析式;
(2)在△ABC中,角A,B,C滿足2sin2 =g(C+ )+1,且其外接圓的半徑R=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣tcosx.若其導函數(shù)f′(x)在R上單調(diào)遞增,則實數(shù)t的取值范圍為( )
A.[﹣1,﹣ ]
B.[﹣ , ]
C.[﹣1,1]
D.[﹣1, ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個公共點,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某媒體對“男女同齡退休”這一公眾關(guān)注的問題進行 了民意調(diào)査,右表是在某單位得到的數(shù)據(jù)(人數(shù)):
贊同 | 反對 | 合計 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計 | 16 | 9 | 25 |
附表:
P(K2≥K) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
(1 )能否有90%以上的把握認為對這一問題的看法與性別有關(guān)?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握認為對這一問題的看法與性別有關(guān)
(1)進一步調(diào)查:(。⿵馁澩澳信g退休”16人中選出3人進行陳述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率; (ⅱ)從反對“男女同齡退休”的9人中選出3人進行座談,設參加調(diào)査的女士人數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項公式;
(2)設 ,求數(shù)列{bn}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com