已知平面向量
a
b
,若|
a
|=3,|
a
-
b
|=
13
,
a
b
=
3
2
,則|
b
|=
 
;向量
a
,
b
夾角的大小為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量的定義和向量夾角公式即可得出.
解答: 解:∵|
a
|=3,|
a
-
b
|=
13
,
a
b
=
3
2
,
a
2
+
b
2
-2
a
b
=13,∴32+
b
2
-2×
3
2
=13,
解得
b
2
=7
則|
b
|=
7

3
2
=
a
b
=
7
×cos<
a
,
b
,
解得cos<
a
,
b
=
7
14

a
b
=arccos
7
14

故答案為:
7
,arccos
7
14
點(diǎn)評(píng):本題考查了向量的定義和向量夾角公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
25
9
-(
8
27
 
1
3
-(π+e)0+(
1
4
 -
1
2
;
②2lg5+lg4+ln
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)M(
3
1
2
),點(diǎn)P在橢圓C上,F(xiàn)1,F(xiàn)2分別為其左、右焦點(diǎn),∠F1PF2的最大值為120°.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(x0,y0)(x0≠0)作圓x2+y2=1的兩條切線,分別切于A,B兩點(diǎn),直線AB與橢圓C交于M,N兩點(diǎn),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩曲線ρsinθ=2和ρ=4sinθ(ρ>0,0≤θ<2π)的交點(diǎn)的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+log2x=2log2(x-a)恰有一個(gè)實(shí)數(shù)解,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若A∩B≠∅,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)拋兩枚硬幣10次,記兩枚硬幣出現(xiàn)不同面的次數(shù)為X,則D(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2,x≥0
1
x
,x<0
,則f[f(
1
2
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是△ABC內(nèi)一點(diǎn),且
AP
=
1
3
AB
+
1
4
AC
,則△ABP的面積與△ABC的面積之比是( 。
A、1:3B、2:3
C、1:4D、2:1

查看答案和解析>>

同步練習(xí)冊(cè)答案