已知函數(shù),則使函數(shù)g(x)=f(x)+x-m有零點(diǎn)的實(shí)數(shù)m的取值范圍是

A.            B.          C. D.

 

【答案】

D

【解析】

試題分析:函數(shù)的零點(diǎn)就是方程的根,

作出的圖象,觀察它與直線的交點(diǎn),得知當(dāng)時,或時有交點(diǎn),即函數(shù)有零點(diǎn).

考點(diǎn):函數(shù)的零點(diǎn)。

點(diǎn)評:本題充分體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。函數(shù)的零點(diǎn)、方程的根、函數(shù)圖像與x軸的交點(diǎn),做題時注意三者之間的等價轉(zhuǎn)化。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)已知函數(shù)f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函數(shù)g(x)的極大值.
(Ⅱ)求證:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)對于函數(shù)f(x)與h(x)定義域內(nèi)的任意實(shí)數(shù)x,若存在常數(shù)k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|,g(x)=x2+2ax+1(a為正實(shí)數(shù)),且函數(shù)f(x)與g(x)的圖象在y軸上的截距相等.
(1)求a的值;
(2)對于函數(shù)F(x)及其定義域D,若存在x0∈D,使F(x0)=x0成立,則稱x0為F(x)的不動點(diǎn).若f(x)+g(x)+b在其定義域內(nèi)存在不動點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)若n為正整數(shù),證明:10f(n)•(
4
5
)g(n)<4

(參考數(shù)據(jù):lg3=0.3010,(
4
5
)9=0.1342
,(
4
5
)16=0.0281
(
4
5
)25=0.0038

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+3,若用函數(shù)g(t)替代x,則得到函數(shù)f[g(t)],則下列關(guān)于g(t)的表達(dá)式,會使f[g(t)]的值域不同于f(x)的值域的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)和g(x)滿足g(x)≠0,f′(x)•g(x)<f(x)•g′(x)f(x)=ax•g(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.令an=
f(n)
g(n)
,則使數(shù)列{an}的前n項(xiàng)和Sn不超過
15
16
的最大自然數(shù)n的值為
4
4

查看答案和解析>>

同步練習(xí)冊答案