分析 根據(jù)對(duì)稱軸的性質(zhì)和周期公式求解出ω,φ,可得f(x)的解析式,結(jié)合三角函數(shù)的圖象及性質(zhì)判斷可得答案.
解答 解:由題意,周期為π,即T=$\frac{2π}{ω}=π$,可得ω=2.則f(x)=2sin(2x+φ)
圖象關(guān)于直線$x=\frac{2π}{3}$對(duì)稱,可得2×$\frac{2π}{3}$+φ=k$π+\frac{π}{2}$,k∈Z.
∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$.
則f(x)=2sin(2x+$\frac{π}{6}$)
當(dāng)x=0時(shí),可得f(0)=1,圖象過點(diǎn)(0,1),∴①不對(duì).
由$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$$≤\frac{3π}{2}+2kπ$,k∈Z.
得:$\frac{π}{6}+kπ$≤x≤$\frac{2π}{3}$+kπ.
可得f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]上單調(diào)遞減;∴②不對(duì).
當(dāng)x=$\frac{5π}{12}$時(shí),可得f($\frac{5π}{12}$)=0,圖象關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱,∴③對(duì).
將f(x)=2sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度得到:2sin(2x$-\frac{π}{6}$),∴④不對(duì).
故答案為③.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用已知條件求出f(x)的解析式是解決本題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{5}$ | B. | 2 | C. | $\frac{11}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S2017=2017,a2011<a7 | B. | S2017=2017,a2017>a7 | ||
C. | S2012=-2017,a2017<a7 | D. | S2017=-2017,a2017>a7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {an}是等比數(shù)列 | B. | {an}不是等差數(shù)列 | C. | a2=1.5 | D. | S5=122 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{9}$ | B. | -1 | C. | 1 | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{asinαsinβ}{sin(β-α)}$ | B. | $\frac{asinαcosβ}{sin(β-α)}$ | C. | $\frac{acosαsinβ}{sin(β-α)}$ | D. | $\frac{asinαsinβ}{cos(β-α)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=9sin4x | B. | y=sin4x | C. | y=9sinx | D. | y=sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,ln2) | B. | $({\frac{1}{e},e})$ | C. | $({0,\frac{1}{e}})$ | D. | (0,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①②③ | C. | ②④ | D. | ①③ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com