【題目】過點作一直線與雙曲線相交于、兩點,若為中點,則( )
A. B. C. D.
【答案】D
【解析】
設(shè)出直線AB的方程與雙曲線方程聯(lián)立消去y,設(shè)兩實根為,,利用韋達定理可表示出的值,根據(jù)P點坐標(biāo)求得=8進而求得k,則直線AB的方程可得;利用弦長公式求得|AB|.
解:易知直線AB不與y軸平行,設(shè)其方程為y﹣2=k(x﹣4)
代入雙曲線C:,整理得(1﹣2k2)x2+8k(2k﹣1)x﹣32k2+32k﹣10=0
設(shè)此方程兩實根為,,則
又P(4,2)為AB的中點,
所以8,
解得k=1
當(dāng)k=1時,直線與雙曲線相交,即上述二次方程的△>0,
所求直線AB的方程為y﹣2=x﹣4化成一般式為x﹣y﹣2=0.=8,=10
|AB|||4.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱中,為的中點,點在側(cè)棱上,平面.
(1)證明:是的中點;
(2)設(shè),四邊形為正方形,四邊形為矩形,且異面直線與所成的角為30°,求兩面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓上的兩點.
(1)求橢圓的離心率;
(2)已知直線過點,且與橢圓交于另一點(不同于點),若以為直徑的圓經(jīng)過點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市開展年終大回饋,設(shè)計了兩種答題游戲方案:
方案一:顧客先回答一道多選題,從第二道開始都回答單選題;
方案二:顧客全部選擇單選題進行回答;
其中每道單選題答對得2分,每道多選題答對得3分,無論單選題還是多選題答錯都得0分,每名參與的顧客至多答題3道.在答題過程中得到3分或3分以上立刻停止答題,并獲得超市回饋的贈品.
為了調(diào)查顧客對方案的選擇情況,研究人員調(diào)查了參與游戲的500名顧客,所得結(jié)果如下表所示:
男性 | 女性 | |
選擇方案一 | 150 | 80 |
選擇方案二 | 150 | 120 |
(1)是否有95%的把握認(rèn)為方案的選擇與性別有關(guān)?
(2)小明回答每道單選題的正確率為0.8,多選題的正確率為0.75,.
①若小明選擇方案一,記小明的得分為,求的分布列及期望;
②如果你是小明,你覺得選擇哪種方案更有可能獲得贈品,請通過計算說明理由.
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以橢圓的中心O為圓心,以為半徑的圓稱為該橢圓的“伴隨”.已知橢圓的離心率為,且過點.
(1)求橢圓C及其“伴隨”的方程;
(2)過點作“伴隨”的切線l交橢圓C于A,B兩點,記為坐標(biāo)原點)的面積為,將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)是上的增函數(shù).
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若滿足為假命題且為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費及其構(gòu)成,現(xiàn)有如下說法:
①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;
②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;
③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的.
則上述說法中,正確的個數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com