【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且acosC=(2b﹣c)cosA.
(1)若3,求△ABC的面積;
(2)若∠B<∠C,求2cos2B+cos2C的取值范圍.
【答案】(1)(2)(,).
【解析】
(1)利用正弦定理可求角A,結(jié)合數(shù)量積3,可求△ABC的面積;
(2)結(jié)合角之間的關(guān)系,把2cos2B+cos2C化簡(jiǎn)為,然后結(jié)合角的范圍可求.
(1)∵acosC=(2b﹣c)cosA,
∴由正弦定理可得sinAcosC=(2sinB﹣sinC)cosA,可得sinAcosC+sinCcosA=sin(A+C)=sinB=2sinBcosA,
∵B為三角形內(nèi)角,sinB≠0,
∴cosA,
又∵A∈(0,π),
∴A,
∵bccosAbc=3,可得bc=6,
∴S△ABCbcsinA.
(2)∵∠B<∠C,CB,可得B∈(0,),
∴2B∈(,),
∴cos(2B)∈(,),
∴2cos2B+cos2C=1+cos2Bcos2Bcos2(B)cos2Bcos2Bsin2Bcos(2B)∈(,).
∴2cos2B+cos2C的取值范圍(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,動(dòng)點(diǎn)滿足直線與的斜率之積為.記點(diǎn)的軌跡為曲線.
(1)求的方程,并說明是什么曲線;
(2)若,是曲線上的動(dòng)點(diǎn),且直線過點(diǎn),問在軸上是否存在定點(diǎn),使得?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某無縫鋼管廠只生產(chǎn)甲、乙兩種不同規(guī)格的鋼管,鋼管有內(nèi)外兩個(gè)口徑,甲種鋼管內(nèi)外兩口徑的標(biāo)準(zhǔn)長(zhǎng)度分別為和,乙種鋼管內(nèi)外兩個(gè)口徑的標(biāo)準(zhǔn)長(zhǎng)度分別為和.根據(jù)長(zhǎng)期的生產(chǎn)結(jié)果表明,兩種規(guī)格鋼管每根的長(zhǎng)度都服從正態(tài)分布,長(zhǎng)度在之外的鋼管為廢品,要回爐熔化,不準(zhǔn)流入市場(chǎng),其他長(zhǎng)度的鋼管為正品.
(1)在該鋼管廠生產(chǎn)的鋼管中隨機(jī)抽取10根進(jìn)行檢測(cè),求至少有1根為廢品的概率;
(2)監(jiān)管部門規(guī)定每種規(guī)格鋼管的“口徑誤差”的計(jì)算方式為:若鋼管的內(nèi)外兩個(gè)口徑實(shí)際長(zhǎng)分別為,標(biāo)準(zhǔn)長(zhǎng)分別為,則“口徑誤差”為,按行業(yè)生產(chǎn)標(biāo)準(zhǔn),其中“一級(jí)品”“二級(jí)品”“合格品”的“口徑誤差”的范圍分別是(正品鋼管中沒有“口徑誤差”大于的鋼管),現(xiàn)分別從甲、乙兩種產(chǎn)品的正品中各隨機(jī)抽取100根,分別進(jìn)行“口徑誤差”的檢測(cè),統(tǒng)計(jì)后,繪制其頻率分布直方圖如圖所示:
甲種鋼管 乙種鋼管
已知經(jīng)銷商經(jīng)銷甲種鋼管,其中“一級(jí)品”的利潤(rùn)率為0.3,“二級(jí)品”的利潤(rùn)率為0.18,“合格品”的利潤(rùn)率為0.1;經(jīng)銷乙種鋼管,其中“一級(jí)品”的利潤(rùn)率為0.25,“二級(jí)品”的利潤(rùn)率為0.15,“合格品”的利潤(rùn)率為0.08,若視頻率為概率.
(。┤艚(jīng)銷商對(duì)甲、乙兩種鋼管各進(jìn)了100萬元的貨,和分別表示經(jīng)銷甲、乙兩種鋼管所獲得的利潤(rùn),求和的數(shù)學(xué)期望和方差,并由此分析經(jīng)銷商經(jīng)銷兩種鋼管的利弊;
(ⅱ)若經(jīng)銷商計(jì)劃對(duì)甲、乙兩種鋼管總共進(jìn)100萬元的貨,則分別在甲、乙兩種鋼管上進(jìn)貨多少萬元時(shí),可使得所獲利潤(rùn)的方差和最?
附:若隨機(jī)變量服從正態(tài)分布,則,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設(shè)計(jì)如圖所示,AB為地面,CD,CE為路燈燈桿,CD⊥AB,∠DCE=,在E處安裝路燈,且路燈的照明張角∠MEN=.已知CD=4m,CE=2m.
(1)當(dāng)M,D重合時(shí),求路燈在路面的照明寬度MN;
(2)求此路燈在路面上的照明寬度MN的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運(yùn)動(dòng)的時(shí)長(zhǎng),隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運(yùn)動(dòng)的總時(shí)長(zhǎng)(單位:小時(shí)),按照共6組進(jìn)行統(tǒng)計(jì),得到男生、女生每周運(yùn)動(dòng)的時(shí)長(zhǎng)的統(tǒng)計(jì)如下(表1、2),規(guī)定每周運(yùn)動(dòng)15小時(shí)以上(含15小時(shí))的稱為“運(yùn)動(dòng)合格者”,其中每周運(yùn)動(dòng)25小時(shí)以上(含25小時(shí))的稱為“運(yùn)動(dòng)達(dá)人”.
表1:男生
時(shí)長(zhǎng) | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時(shí)長(zhǎng) | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運(yùn)動(dòng)時(shí)長(zhǎng)不小于20小時(shí)的男生中隨機(jī)選取2人,求選到“運(yùn)動(dòng)達(dá)人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).
每周運(yùn)動(dòng)的時(shí)長(zhǎng)小于15小時(shí) | 每周運(yùn)動(dòng)的時(shí)長(zhǎng)不小于15小時(shí) | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) | |||
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,平面,底面為正方形,且.若四棱錐的每個(gè)頂點(diǎn)都在球的球面上,則球的表面積的最小值為_____;當(dāng)四棱錐的體積取得最大值時(shí),二面角的正切值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓上一動(dòng)點(diǎn)(與左、右頂點(diǎn)不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.
(1)求橢圓C的方程;
(2)過的直線交橢圓于兩點(diǎn),過作軸的垂線交橢圓與另一點(diǎn)(不與重合).設(shè)的外心為,求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究不同性別在處理多任務(wù)時(shí)的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時(shí)完成多個(gè)任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時(shí)間分布.以下結(jié)論,對(duì)志愿者完成任務(wù)所需的時(shí)間分布圖表理解正確的是( )
①總體看女性處理多任務(wù)平均用時(shí)更短;
②所有女性處理多任務(wù)的能力都要優(yōu)于男性;
③男性的時(shí)間分布更接近正態(tài)分布;
④女性處理多任務(wù)的用時(shí)為正數(shù),男性處理多任務(wù)的用時(shí)為負(fù)數(shù).
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試.已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐
個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該隊(duì)員的成績(jī),無需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:
(1)計(jì)算值;
(2)以此樣本的頻率作為概率,求
①在本次達(dá)標(biāo)測(cè)試中,“喵兒”得分等于的概率;
②“喵兒”在本次達(dá)標(biāo)測(cè)試中可能得分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com