設(shè),在x軸上的射影為2,則=( )
A.
B.
C.
D.
【答案】分析:由條件“在x軸上的射影為2”,即可設(shè),再根據(jù),即求出y.
解答:解:由題意,可設(shè)


∴2×3+4y=0,解得y=

故選B.
點(diǎn)評(píng):向量知識(shí)是高考中的常見(jiàn)內(nèi)容,經(jīng)常會(huì)與其他知識(shí)結(jié)合起來(lái)綜合考量,比如三角函數(shù),數(shù)列,解析幾何等,其中,對(duì)于非零向量?是經(jīng)?疾榈降闹R(shí)點(diǎn),考生要尤為重視.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點(diǎn)為A,橢圓C上兩點(diǎn)P,Q在x軸上的射影分別為左焦點(diǎn)F1和右焦點(diǎn)F2,直線PQ的斜率為
3
2
,過(guò)點(diǎn)A且與AF1垂直的直線與x軸交于點(diǎn)B,△AF1B的外接圓為圓M.
(1)求橢圓的離心率;
(2)直線l:3x+4y+
1
4
a2=0
與圓M相交于E,F(xiàn)兩點(diǎn),且
ME
MF
=-
1
2
a2
,求橢圓方程;
(3)設(shè)點(diǎn)N(0,3)在橢圓C內(nèi)部,若橢圓C上的點(diǎn)到點(diǎn)N的最遠(yuǎn)距離不大于6
2
,求橢圓C的短軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過(guò)F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1′上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓C2的兩條切線,交拋物線C′1于T,S,兩點(diǎn),若過(guò)N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)數(shù)學(xué)公式,數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式在x軸上的射影為2,則數(shù)學(xué)公式=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省贛州市于都實(shí)驗(yàn)中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè),在x軸上的射影為2,則=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案