【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(1)若,求曲線的直角坐標(biāo)方程以及直線的極坐標(biāo)方程;

(2)設(shè)點,曲線與直線交于兩點,求的最小值.

【答案】1)曲線的直角坐標(biāo)方程為,直線的極坐標(biāo)方程為

2

【解析】

(1)由極坐標(biāo)與直角坐標(biāo)轉(zhuǎn)化的關(guān)系即可轉(zhuǎn)化曲線的方程;對直線的參數(shù)方程消參轉(zhuǎn)化為普通方程,再由極坐標(biāo)與直角坐標(biāo)轉(zhuǎn)化的關(guān)系即可轉(zhuǎn)化直線的方程;

2)由于A,B兩點是曲線與直線交于兩點,即可設(shè)點,對應(yīng)的參數(shù)分別為,聯(lián)立直線的參數(shù)方程與曲線的普通方程,進(jìn)而由直線參數(shù)方程中參數(shù)的幾何意義與韋達(dá)定理即可表示并求得最值.

(1)曲線,將代入得,即曲線的直角坐標(biāo)方程為

直線為參數(shù)),故,

故直線的極坐標(biāo)方程為

(2)聯(lián)立直線與曲線的方程得,

設(shè)點對應(yīng)的參數(shù)分別為,則

因為

所以的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊, ,那么下面說法正確的是( )

A. 平面平面

B. 四面體的體積是

C. 二面角的正切值是

D. 與平面所成角的正弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為ABBC的中點,點F在側(cè)棱B1B上,且, .

求證:(1)直線DE平面A1C1F

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是等比數(shù)列,有下列四個命題:①是等比數(shù)列;②是等比數(shù)列;③是等比數(shù)列;④是等比數(shù)列,其中正確命題的序號是( )

A.②④B.③④C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會針對居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計圖.

(Ⅰ)求得分在上的頻率;

(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

(Ⅲ)以頻率估計概率,若在全部參與學(xué)習(xí)的居民中隨機(jī)抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,使電路接通,開關(guān)不同的開閉方式有( )

A. 11B. 20

C. 21D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

1)求函數(shù)上的最小值;

2)函數(shù),若在其定義域內(nèi)有兩個不同的極值點,求a的取值范圍;

3)記的兩個極值點分別為,且.已知,若不等式恒成立,求的取值范圍.注:為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點.(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)

1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;

2)若這兩個函數(shù)的所有極值之和不小于,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:ab0)的兩個焦點分別為F1(-0)、F20.M1,0)與橢圓短軸的兩個端點的連線相互垂直.

1)求橢圓C的方程;

2)已知點N的坐標(biāo)為(3,2),點P的坐標(biāo)為(m,n)(m≠3.過點M任作直線l與橢圓C相交于A、B兩點,設(shè)直線AN、NPBN的斜率分別為k1、k2k3,若k1k32k2,試求mn滿足的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案