敘述并證明面面垂直的性質(zhì)定理.
定理:若兩個平面
 
,則一個平面內(nèi)垂直于
 
的直線與另一個平面垂直.
已知:如圖,設(shè)
 
,α∩β=l,
 
 
,AB∩l=B,求證:
 
考點:平面與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:敘述面面垂直的性質(zhì)定理.在β內(nèi)過點B作BC⊥l,則∠ABC為二面角α-l-β的平面角,由α⊥β,得AB⊥BC,由此能證明AB⊥β.
解答: (本小題滿分12分)
解:面面垂直的性質(zhì)定理:若兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.…(2分)
已知:如圖,設(shè)α⊥β,α∩β=l,AB?α,AB⊥l,AB∩l=B
求證:AB⊥β…(6分)
故答案為:垂直,交線,α⊥β,AB?α,AB⊥l,AB⊥β.
證明:在β內(nèi)過點B作BC⊥l,
則∠ABC為二面角α-l-β的平面角,…(8分)
由α⊥β,得AB⊥BC,…(10分)
又AB⊥l,l與BC為β內(nèi)兩條相交直線,
則AB⊥β.…(12分)
點評:本題考查面面垂直的性質(zhì)定理的敘述與證明,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

菱形ABCD邊長為2,∠BAD=120°,點E,F(xiàn)分別別在BC,CD上,
BE
BC
,
DF
DC
,若
AE
AF
=1,
CE
CF
=-
3
2
,則λ+μ=( 。
A、
1
2
B、
3
2
C、
5
4
D、
7
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinx,cisx),
b
=(cosx,cosx),設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)單調(diào)增區(qū)間;
(Ⅱ)若x∈[-
π
6
,
π
3
],求函數(shù)f(x)的最值,并指出f(x)取得最值時x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-2ax+4+2a在區(qū)間[0,+∞)上的最小值為1,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義域為R的奇函數(shù),且當(dāng)x∈[0,+∞)時f(x)=loga
ax+1
m
),(a>0,a≠1).
(1)求實數(shù)m的值;并求函數(shù)y=f(x)在定義域R上的解析式;
(2)求證:函數(shù)f(x)在區(qū)間[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體AC1中,E為BC中點,在棱CC1上求一點P,使平面A1B1P⊥平面C1DE;并說明原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1中,D是BC的中點,AA1=AB=1.
(Ⅰ)求證:A1C∥平面AB1D;
(Ⅱ)求二面角B-AB1-D的正切值;
(Ⅲ)求點C到平面AB1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是函數(shù)f(x)=ex+x-2的零點.
(1)若a∈(n,n+1),n∈N,求n的值;
(2)求證:1<ea<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
4
+y2=1的短軸的端點分別為A,B(如圖),直線AM,BM分別與橢圓C交于E,F(xiàn)兩點,其中點M(m,
1
2
)滿足m≠0,且m≠±
3

(1)用m表示點E,F(xiàn)的坐標;
(2)證明直線EF與y軸交點的位置與m無關(guān).
(3)若△BME面積是△AMF面積的5倍,求m的值.

查看答案和解析>>

同步練習(xí)冊答案