【題目】設{an}是各項都為整數的等差數列,其前n項和為,是等比數列,且,,,.
(1)求數列,的通項公式;
(2)設cn=log2b1+log2b2+log2b3+…+log2bn, .
(i)求Tn;
(ii)求證:2.
【答案】(1),,(2)(i)n3(ii)證明見解析;
【解析】
(1)設等差數列{an}的公差為d,等比數列{bn}的公比為q,運用等差數列和等比數列的通項公式,解方程可得公差和公比,即可得到所求通項公式;
(2)(i)運用對數的運算性質和等差數列的求和公式可得,an2﹣n﹣1+2i,再由數列的分組求和,結合等差數列的求和公式,計算可得所求和;
(ii)推得,再由數列的裂項相消求和,結合不等式的性質,即可得證.
解:(1)設等差數列{an}的公差為d,等比數列{bn}的公比為q,由,,,可得,
解得d=2,q=2或d,q=5,
由于{an}是各項都為整數的等差數列,所以d=2,q=2,
從而,,;
(2)(i)∵log2bn=log22n﹣1=n﹣1,
∴cn=0+1+2+…+(n﹣1)n(n﹣1),
∴a2(i)﹣1=n2﹣n﹣1+2i,
∴Tn=(n2﹣n﹣1+2)+(n2﹣n﹣1+4)+…+(n2﹣n﹣1+2n)
=n(n2﹣n﹣1)+(2+4+…+2n)=n(n2﹣n﹣1)+n(n+1)=n3;
(ii)證明:
,
而,
∴,
∴
=1,
由于0,
可得12.
則.
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,過F的直線交拋物線C于,兩點.
(Ⅰ)當時,求的值;
(Ⅱ)過點A作拋物線準線的垂線,垂足為E,過點B作EF的垂線,交拋物線于另一點D,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓經過,且右焦點坐標為.
(1)求橢圓的標準方程;
(2)設A,B為橢圓的左,右頂點,C為橢圓的上頂點,P為橢圓上任意一點(異于A,B兩點),直線AC與直線BP相交于點M,直線BC與直線AP相交于點N,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓:上一點,以點及橢圓的左、右焦點,為頂點的三角形面積為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過作斜率存在且互相垂直的直線,,是與兩交點的中點,是與兩交點的中點,求△面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學高一、高二、高三年級的學生人數之比依次為6:5:7,防疫站欲對該校學生進行身體健康調查,用分層抽樣的方法從該校高中三個年級的學生中抽取容量為n的樣本,樣本中高三年級的學生有21人,則n等于( )
A.35B.45C.54D.63
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數),在以原點O為極點,x的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為
(1)求曲線的普通方程和直線的直角坐標方程;
(2)設直線與x軸,y軸分別交于A,B兩點,點P是曲線上任意一點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分形理論是當今世界十分風靡和活躍的新理論、新學科.其中把部分與整體以某種方式相似的形體稱為分形.分形是一種具有自相似特性的現象.圖象或者物理過程.標準的自相似分形是數學上的抽象,迭代生成無限精細的結構.也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已.謝爾賓斯基三角形就是一種典型的分形,是由波蘭數學家謝爾賓斯基在1915年提出的,其構造方法如下:取一個實心的等邊三角形(如圖1),沿三邊的中點連線,將它分成四個小三角形,挖去中間的那一個小三角形(如圖2),對其余三個小三角形重復上述過程(如圖3).若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c均為正數,設函數f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函數f(x)的最大值為1,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題14分)在平面直角坐標系中,曲線C1的參數方程為 (a>b>0, 為參數),以Ο為極點,x軸的正半軸為極軸建立極坐標系,曲線C2是圓心在極軸上且經過極點的圓,已知曲線C1上的點對應的參數.與曲線C2交于點.
(1)求曲線C1,C2的直角坐標方程;
(2),是曲線C1上的兩點,求 的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com