【題目】已知是橢圓:上一點(diǎn),以點(diǎn)及橢圓的左、右焦點(diǎn),為頂點(diǎn)的三角形面積為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作斜率存在且互相垂直的直線,,是與兩交點(diǎn)的中點(diǎn),是與兩交點(diǎn)的中點(diǎn),求△面積的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)通過已知建立方程組,解方程組即得橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線:,聯(lián)立直線和橢圓方程得到韋達(dá)定理,求出,令,,則再利用導(dǎo)數(shù)求函數(shù)的最大值得解.
解:(Ⅰ)由點(diǎn)在橢圓上可得,
整理得①.
,解得,
所以,代入①式整理得,
解得,.
所以橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)由(Ⅰ)可得,所以設(shè)直線:,
聯(lián)立直線與橢圓的方程,整理得.
所以直線與橢圓兩交點(diǎn)的中點(diǎn)的縱坐標(biāo),
同理直線與橢圓兩交點(diǎn)的中點(diǎn)的縱坐標(biāo),
所以
,
將上式分子分母同除可得,
,
不妨設(shè),令,,則,
令,,因?yàn)?/span>,所以,
所以在單調(diào)遞增,
所以當(dāng)時(shí),三角形△面積取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓的右頂點(diǎn)到直線的距離為3.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的面積的最大值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若直線是曲線的一條切線,求k的值;
(2)當(dāng)時(shí),直線與曲線無交點(diǎn),求整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國天文學(xué)和數(shù)學(xué)著作《周髀算經(jīng)》中記載:一年有二十四個(gè)節(jié)氣,每個(gè)節(jié)氣的晷長損益相同(晷是按照日影測定時(shí)刻的儀器,晷長即為所測量影子的長度).二十四節(jié)氣及晷長變化如圖所示,相鄰兩個(gè)節(jié)氣晷長減少或增加的量相同,周而復(fù)始.已知每年冬至的晷長為一丈三尺五寸,夏至的晷長為一尺五寸(一丈等于十尺,一尺等于十寸),則說法不正確的是( )
A.相鄰兩個(gè)節(jié)氣晷長減少或增加的量為一尺
B.春分和秋分兩個(gè)節(jié)氣的晷長相同
C.立冬的晷長為一丈五寸
D.立春的晷長比立秋的晷長短
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱柱中,,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)若為上的動(dòng)點(diǎn),使直線與平面所成角的正弦值是,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是各項(xiàng)都為整數(shù)的等差數(shù)列,其前n項(xiàng)和為,是等比數(shù)列,且,,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)cn=log2b1+log2b2+log2b3+…+log2bn, .
(i)求Tn;
(ii)求證:2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),討論函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程:(為參數(shù)),以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸(取相同單位長度)建立極坐標(biāo)系,圓的極坐標(biāo)方程為:.
(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求圓上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com