精英家教網 > 高中數學 > 題目詳情

【題目】我國古代數學典籍《九章算術》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現用程序框圖描述,如圖所示,則輸出結果n=(

A.4
B.5
C.2
D.3

【答案】A
【解析】解:模擬執(zhí)行程序,可得
a=1,A=1,S=0,n=1
S=2
不滿足條件S≥10,執(zhí)行循環(huán)體,n=2,a= ,A=2,S=
不滿足條件S≥10,執(zhí)行循環(huán)體,n=3,a= ,A=4,S=
不滿足條件S≥10,執(zhí)行循環(huán)體,n=4,a= ,A=8,S=
滿足條件S≥10,退出循環(huán),輸出n的值為4.
故選:A.
模擬執(zhí)行程序,依次寫出每次循環(huán)得到的a,A,S的值,當S= 時,滿足條件S≥10,退出循環(huán),輸出n的值為4,從而得解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足an+2=an+1﹣an , 且a1=2,a2=3,Sn為數列{an}的前n項和,則S2016的值為(
A.0
B.2
C.5
D.6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數a的最大值為(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是實數,曲線y=f(x)恒與x軸相切于坐標原點.
(1)求常數b的值;
(2)當a=1時,討論函數f(x)的單調性;
(3)當0≤x≤1時關于x的不等式f(x)≥0恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知偶函數上單調遞增,則

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)已知命題:實數滿足,命題:實數滿足方程表示的焦點在軸上的橢圓,且的充分不必要條件,求實數的取值范圍;

(2)設命題:關于的不等式的解集是;:函數的定義域為.若是真命題,是假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)雙曲線的離心率為_____________

(2)點P是橢圓上一點,分別是橢圓的左、右焦點,若,則的大小______

(3)如果是拋物線y2=4x上的點,它們的橫坐標依次為,F是拋物線的焦點,若_______________

(4)若x,y滿足約束條件,則z=x2+y2的最大值為______________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,1].
(1)求m的值;
(2)若a,b,c∈R,且 =m,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cos(2x﹣ )﹣cos2x.
(1)求f( )的值;
(2)求函數f(x)的最小正周期和單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案