分析 方法一:將零點代入,先求參數(shù),再求f(1);
方法二:根據(jù)根與系數(shù)關(guān)系,得x=1是函數(shù)的零點,再求f(1).
解答 解:方法一
∵該函數(shù)有一個零點為$\frac{3}{2}$,
代入函數(shù)得,$\frac{9}{2}$-$\frac{3}{2}$a+3=0,
解得,a=5,所以,f(x)=2x2-5x+3,
因此,f(1)=0.
方法二
根據(jù)根與系數(shù)的關(guān)系,
x1x2=$\frac{3}{2}$且x1=$\frac{3}{2}$,所以x2=1,
所以,f(1)=f(x2)=0,
故答案為:0.
點評 本題主要考查了函數(shù)的零點,涉及函數(shù)值的求解,一元二次方程根與系數(shù)關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A={x|-1≤x≤1},B={x|0≤x≤2},f:x→y=|x| | B. | $A=R,B=R,f:x→y=\frac{1}{x}$ | ||
C. | $A=R,B=R,f:x→y=\left\{\begin{array}{l}0,x≥0\\ 1,x≤0\end{array}\right.$ | D. | $A=N,B=Q,f:x→y=\sqrt{x}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (1,4) | C. | [2,4) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (1,+∞) | C. | (-1,1)∪(1,+∞) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com