A. | 1 | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
分析 利用和差公式可得:函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$),令2sin(ωx+$\frac{π}{6}$)=1,化為sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.由于在曲線y=f(x)與直線y=1的交點(diǎn)中,相鄰交點(diǎn)距離的最小值是$\frac{π}{3}$,可得x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,即可得出.
解答 解:函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx=2($\frac{\sqrt{3}}{2}$sinωx+$\frac{1}{2}$cosωx)=2sin(ωx+$\frac{π}{6}$),
令2sin(ωx+$\frac{π}{6}$)=1,
化為sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,
解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.
∵在曲線y=f(x)與直線y=1的交點(diǎn)中,相鄰交點(diǎn)距離的最小值是$\frac{π}{3}$,
∴$\frac{5π}{6}$-$\frac{π}{6}$+2kπ=ω(x2-x1),令k=0,
∴x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,
解得ω=2.
故選:B.
點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)、三角函數(shù)方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$a2 | B. | 2a2 | C. | $\frac{3}{2}$a2 | D. | $\frac{\sqrt{3}}{2}$a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2004 | B. | 2009 | C. | 4011 | D. | 4013 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | 7π | C. | 12π | D. | 13π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com