9.某省電視臺(tái)為了解該省衛(wèi)視一檔成語(yǔ)類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:
其中一個(gè)數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過(guò)西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)成語(yǔ)知識(shí)的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語(yǔ)知識(shí)的時(shí)間y(單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如表所示)
年齡x(歲)20304050
周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間y(小時(shí))2.5344.5
由表中數(shù)據(jù),試求線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測(cè)年齡為55歲觀眾周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$x.

分析 (1)求出基本事件的個(gè)數(shù),即可求出概率;
(2)求出回歸系數(shù),可得回歸方程,再預(yù)測(cè)年齡為55歲觀眾周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間.

解答 解:(1)設(shè)被污損的數(shù)字為a,則a有10種情況.
令88+89+90+91+92>83+83+97+90+a+99,則a<8,
∴東部各城市觀看該節(jié)目觀眾平均人數(shù)超過(guò)西部各城市觀看該節(jié)目觀眾平均人數(shù),有8種情況,
其概率為$\frac{8}{10}$=$\frac{4}{5}$;
(2)由表中數(shù)據(jù)得$\overline{x}$=35,$\overline{y}$=3.5,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$=$\frac{525-10×35×3.5}{5400-10×3{5}^{2}}$=$\frac{7}{100}$,$\stackrel{∧}{a}$=$\frac{21}{20}$
∴$\stackrel{∧}{y}$=$\frac{7}{100}$x+$\frac{21}{20}$.
x=55時(shí),$\stackrel{∧}{y}$=4.9小時(shí).
可預(yù)測(cè)年齡為55觀眾周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間為4.9小時(shí).

點(diǎn)評(píng) 本題考查古典概型概率的計(jì)算,考查獨(dú)立性檢驗(yàn)知識(shí)的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.拋物線x2=2my(m>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1(n>0)$有兩個(gè)交點(diǎn)A,B,若∠AFB=120°,則雙曲線的離心率為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某商城舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:
1.抽獎(jiǎng)方案有以下兩種,方案a:從裝有2個(gè)紅球、3個(gè)白球(僅顏色不同)的甲袋中隨機(jī)摸出2個(gè)球,若都是紅球,則獲得獎(jiǎng)金30元;否則,沒(méi)有獎(jiǎng)金,兌獎(jiǎng)后將摸出的球放回甲袋中,方案b:從裝有3個(gè)紅球、2個(gè)白球(僅顏色相同)的乙袋中隨機(jī)摸出2個(gè)球,若都是紅球,則獲得獎(jiǎng)金15元;否則,沒(méi)有獎(jiǎng)金,兌獎(jiǎng)后將摸出的球放回乙袋中.
2.抽獎(jiǎng)條件是,顧客購(gòu)買商品的金額買100元,可根據(jù)方案a抽獎(jiǎng)一次:滿150元,可根據(jù)方案b抽獎(jiǎng)一次(例如某顧客購(gòu)買商品的金額為260元,則該顧客可以根據(jù)方案a抽獎(jiǎng)兩次或方案b抽獎(jiǎng)一次或方案a、b各抽獎(jiǎng)一次).已知顧客A在該商場(chǎng)購(gòu)買商品的金額為350元.
(1)若顧客A只選擇方案a進(jìn)行抽獎(jiǎng),求其所獲獎(jiǎng)金的期望值;
(2)要使所獲獎(jiǎng)金的期望值最大,顧客A應(yīng)如何抽獎(jiǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若$\frac{1}{a}$<$\frac{1}$<0,則下列結(jié)論正確的是( 。
A.a2>b2B.1>($\frac{1}{2}$)b>($\frac{1}{2}$)aC.$\frac{a}$+$\frac{a}$<2D.aeb>bea

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.曲線C:ρ2-2ρcosθ-8=0  曲線E:$\left\{\begin{array}{l}{x=t+2}\\{y=kt+1}\end{array}\right.$(t是參數(shù))
(1)求曲線C的普通方程,并指出它是什么曲線.
(2)當(dāng)k變化時(shí)指出曲線K是什么曲線以及它恒過(guò)的定點(diǎn)并求曲線E截曲線C所得弦長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年30天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),將這30天的測(cè)量結(jié)果繪制成樣本頻率分布直方圖如圖.
(Ⅰ)求圖中a的值;
(Ⅱ)由頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z滿足z•(2+i)=i,i為虛數(shù)單位,則|$\overline{z}$|的值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\sqrt{5}$C.1D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.二項(xiàng)式${({{x^2}-\frac{2}{{\sqrt{x}}}})^5}$展開(kāi)式的常數(shù)項(xiàng)為(  )
A.-80B.-16C.80D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的直線與拋物線交于A、B兩點(diǎn),若|AB|=6,則線段AB的中點(diǎn)M的橫坐標(biāo)為( 。
A.2B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案