14.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{5}{3}$B.2C.$\frac{5}{2}$D.3

分析 由三視圖知該幾何體是一個四棱錐,并畫出直觀圖和對應(yīng)的正方體,由三視圖求出幾何元素的長度,由正方體的性質(zhì)、錐體的體積公式求出幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是一個四棱錐P-ABCD,是棱長為2的正方體一部分,
直觀圖如圖所示:
∵平面PAC是正方體的對角面,∴中點B到平面PAC的距離是$\frac{\sqrt{2}}{2}$,
由正方體的性質(zhì)可得,幾何體的體積V=VP-ACD+VP-ABC
=VA-PCD+VBP-PAC
=$\frac{1}{3}×\frac{1}{2}×2×2×2+\frac{1}{3}×\frac{1}{2}×2×2\sqrt{2}×\frac{\sqrt{2}}{2}$=2,
故選:B.

點評 本題考查三視圖求幾何體的體積,以及換底法求三棱錐的條件,由三視圖和正方體正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在邊長為1的正方形組成的網(wǎng)格中,畫出的是一個幾何體的三視圖,則該幾何體的體積是(  )
A.9B.$\frac{27}{2}$C.18D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=|lnx|,滿足f(a)=f(b)(a≠b),則(注:選項中的e為自然對數(shù)的底數(shù))( 。
A.ab=exB.ab=eC.ab=$\frac{1}{e}$D.ab=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,圓錐的頂點為P,底面圓心為O,線段AB和線段CD都是底面圓的直徑,且直線AB與直線CD的夾角為$\frac{π}{2}$,已知|OA|=1,|PA|=2.
(1)求該圓錐的體積;
(2)求證:直線AC平行于平面PBD,并求直線AC到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,邊長為2的正△ABC頂點A在平面α上,B,C在平面α的同側(cè),M為BC的中點.若△ABC在平面α上的投影是以A為直角頂點的△A1B1C1,則M到平面α的距離的取值范圍是[$\sqrt{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AB⊥平面BCP,CD∥AB,AB=BC=CP=BP=2,CD=1.
(1)求點B到平面DCP的距離;
(2)點M為線段AB上一點(含端點),設(shè)直線MP與平面DCP所成角為α,求sinα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,正三棱錐O-ABC的各邊長為2,求該三棱錐的體積及表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ai∈{0,1,2}(i=0,1,2,3),且a0≠0,則A中所有元素之和等于837.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=e2x-(x-1)2,(e≈2.71828)
(1 )求曲線y=f(x)在點(l,f(1))處的切線方程;
(2)設(shè)方程f(x)=m-1+4x-x2在[-1,2]上恰有兩個不同的實根,求變數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案