若△ABC滿足數(shù)學(xué)公式,則tanB的最大值是________.


分析:由A和B為三角形的內(nèi)角,得到sinA和sinB都大于0,進(jìn)而確定出C為鈍角,利用誘導(dǎo)公式及三角形的內(nèi)角和定理化簡已知等式的左邊,得到sinB=-3sinAcosC,再由sinB=sin(A+C),利用兩角和與差的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系化簡,得到tanC=-4tanA,將tanB利用誘導(dǎo)公式及三角形的內(nèi)角和定理化簡為-tan(A+C),利用兩角和與差的正切函數(shù)公式化簡,將tanC=-4tanA代入,變形后利用基本不等式求出tanB的范圍,即可得到tanB的最大值.
解答:∵sinA>0,sinB>0,
=-3cosC>0,即cosC<0,
∴C為鈍角,sinB=-3sinAcosC,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC+cosAsinC=-3sinAcosC,即cosAsinC=-4sinAcosC,
∴tanC=-4tanA,
∴tanB=-tan(A+C)=-=-=,
當(dāng)且僅當(dāng),即tanA=時取等號,
則tanB的最大值為
故答案為:
點評:此題考查了同角三角函數(shù)間的基本關(guān)系,兩角和與差的正弦、正切函數(shù)公式,以及基本不等式的運用,熟練掌握基本關(guān)系及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
(1)若函數(shù)f(x)=lg(x+
x2+a
),為奇函數(shù),則a=1;
(2)函數(shù)f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),則
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,則△ABC是鈍角三角形
( 5)O是△ABC所在平面上一定點,動點P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),則直線AP一定通過△ABC的內(nèi)心.
以上命題為真命題的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A,B,C是上不共線的三點,動點P滿足
OP
=
1
3
[(1-t)
OA
+(1-t)
OB
+(1+2t)
OC
]
(t∈R且t≠0),則點P的軌跡一定通過△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)給出下列命題:
①設(shè)向量
e1
e2
滿足|
e1
|=2,|
e2
|=1,
e1
,
e2
的夾角為
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夾角為鈍角,則實數(shù)t的取值范圍是(-7,-
1
2
);
②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
③設(shè)a,b,c分別為△ABC的角A,B,C的對邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
上面命題中,假命題的序號是
 (寫出所有假命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下列命題:
(1)若函數(shù)f(x)=lg(x+數(shù)學(xué)公式),為奇函數(shù),則a=1;
(2)函數(shù)f(x)=|sinx|的周期T=π;
(3)已知數(shù)學(xué)公式,其中θ∈(π,數(shù)學(xué)公式),則數(shù)學(xué)公式
(4)在△ABC中,數(shù)學(xué)公式=a,數(shù)學(xué)公式=b,若a•b<0,則△ABC是鈍角三角形
( 5)O是△ABC所在平面上一定點,動點P滿足:數(shù)學(xué)公式,λ∈(0,+∞),則直線AP一定通過△ABC的內(nèi)心.
以上命題為真命題的是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知f(x)是定義在R上的奇函數(shù),且t2+tf′(x)-2t+1>0對x>0及t>0都恒成立,若f()=0,且△ABC的內(nèi)角滿足f(cosA)<0,則角A的取值范圍是(    )

A.(,)                                   B.()

C.(0,)∪(,π)                           D.()∪(,π)

查看答案和解析>>

同步練習(xí)冊答案