【題目】若直角坐標平面內(nèi)兩點P,Q滿足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點對稱,則對稱點(P,Q)是函數(shù)y=f(x)的一個“伙伴點組”(點對(P,Q)與(Q,P)看作同一個“伙伴點組”).則下列函數(shù)中,恰有兩個“伙伴點組”的函數(shù)是(填空寫所有正確選項的序號)
①y= ;②y= ;③y= ;④y=

【答案】②③
【解析】解:①函數(shù)y=﹣x﹣1,(x<0)關(guān)于原點對稱的函數(shù)為﹣y=x﹣1,即y=﹣x+1,
在x>0上作出兩個函數(shù)的圖象如圖,
由圖象可知兩個函數(shù)在x>0上的交點個數(shù)只有一個,所以函數(shù)f(x)的“伙伴點組”有1個,不滿足條件.

②函數(shù)y=﹣ln|x|(x<0)關(guān)于原點對稱的函數(shù)為﹣y=﹣ln|﹣x|,即y=ln|x|,
在x>0上作出兩個函數(shù)的圖象如圖,
由圖象可知兩個函數(shù)在x>0上的交點個數(shù)有2個,所以函數(shù)f(x)的“伙伴點組”有2個,滿足條件.

③函數(shù)y=﹣x2﹣4x,(x<0)關(guān)于原點對稱的函數(shù)為﹣y=﹣x2+4x,即y=x2﹣4x,
在x>0上作出兩個函數(shù)的圖象如圖,
由圖象可知兩個函數(shù)在x>0上的交點個數(shù)有2個,所以函數(shù)f(x)的“伙伴點組”有2個,滿足條件.

④函數(shù)y=ex , (x<0)關(guān)于原點對稱的函數(shù)為﹣y=ex , 即y=﹣ex ,
在x>0上作出兩個函數(shù)的圖象如圖,
由圖象可知兩個函數(shù)在x>0上的交點個數(shù)有0個,所以函數(shù)f(x)的“伙伴點組”有0個,不滿足條件.
,
所以答案是:②③.
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
(1)討論f(x)的單調(diào)性與極值點的個數(shù);
(2)當a=0時,關(guān)于x的方程f(x)=m(m∈R)有2個不同的實數(shù)根x1 , x2 , 證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x>0).
(1)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(2)若f(x)> 恒成立,求整數(shù)k的最大值;
(3)求證:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻,隨機摸出一球,不放回;再隨機摸出一球,兩次摸出的球上的漢字組成“孔孟”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x>0).
(1)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(2)若f(x)> 恒成立,求整數(shù)k的最大值;
(3)求證:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求數(shù)列{an}的通項公式an;
(2)令 ,寫出Tn關(guān)于n的表達式,并求滿足Tn 時n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直角坐標平面內(nèi)兩點P,Q滿足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點對稱,則對稱點(P,Q)是函數(shù)y=f(x)的一個“伙伴點組”(點對(P,Q)與(Q,P)看作同一個“伙伴點組”).則下列函數(shù)中,恰有兩個“伙伴點組”的函數(shù)是(填空寫所有正確選項的序號)
①y= ;②y= ;③y= ;④y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fn(x)=﹣xn+3ax(a∈R,n∈N+),若對任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,則a的取值范圍是(
A.[ , ]
B.[ , ]
C.[ , ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)g(x)=alnx,對任意x∈[1,e],都有g(shù)(x)≥﹣x2+(a+2)x恒成立,則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案