已知直線過點且與拋物線交于AB兩點,以弦AB為直徑的圓恒過坐標原點O.

(1)求拋物線的標準方程;

(2)是直線上任意一點,求證:直線QA、QM、QB的斜率依次成等差數(shù)列.

 

【答案】

(1) (2)詳見解析.

【解析】

試題分析:(1)設直線方程為,代入

,,則有, ,

,得,所以拋物線方程為;

(2)是直線上任意一點,可設(1) ,

= , ==,

==,

+=+=

= = == =,有等差中項的性質(zhì)可知直線QA、QP、QB的斜率依次成等差數(shù)列.

試題解析:(1)設直線方程為,代入

,,則有 2

,

,得,所以拋物線方程為 6

說明:取過M 點的特殊位置的直線求得拋物線的方程給滿分.

(2)(1) ,

= , ==,

==, 9

+=+=

=

= == = 12

所以直線QAQP、QB的斜率依次成等差數(shù)列. 13

考點:1.拋物線的方程;2.直線與拋物線的位置關(guān)系.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學 題型:填空題

22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

 
(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數(shù)學 題型:解答題

(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省南通市如東縣栟茶高級中學高考數(shù)學一模試卷(解析版) 題型:解答題

已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學最有可能考的50題(解析版) 題型:解答題

已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y-1)2=1交于A、C、D、B四點,試證明|AC|•|BD|為定值;
(III)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

同步練習冊答案