已知函數(shù),且.(e是自然對數(shù)的底數(shù))
(1)求a與b的關系式;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍.
【答案】分析:(1)根據(jù)f(x)的解析式及f(e)的解析式確定a與b的關系.
(2)因為f(x)在其定義域(0,+∞)內(nèi)為單調(diào)函數(shù),所以,它的導數(shù)大于或等于0恒成立,或它的導數(shù)小于或等于0恒成立,分別就a=0、a>0、a<0三種情況進行討論.
解答:解:(1)由題意知,f(e)=ae--2=be--2,
∴(a-b)•(e+)=0,∴a=b,
(2)由(1)知  f(x)=ax--2•lnx,f′(x)=a+-=,
令 h(x)=ax2-2x+a,因為f(x)在其定義域(0,+∞)內(nèi)為單調(diào)函數(shù),
∴在其定義域(0,+∞)內(nèi),h(x)≥0或h(x)≤0恒成立.
①當a=0時,h(x)=-2x,
∵x>0,∴h(x)<0,f′(x)<0,f(x)在其定義域(0,+∞)內(nèi)為單調(diào)函數(shù),
故a=0滿足條件.
②當a>0時,h(x)圖象是開口向上的拋物線,對稱軸是x=,h(x)的最小值是a-,只需 a-≥0,
∴a≥1,即a≥1時,f(x)在其定義域(0,+∞)內(nèi)為單調(diào)函數(shù),故a≥1滿足條件.
③當a<0時,h(x)圖象是開口向下的拋物線,對稱軸是x=∈(0,+∞),
∴在(0,+∞)內(nèi),h(x)≤0成立,
∴f(x)在其定義域(0,+∞)內(nèi)為單調(diào)減函數(shù),
∴當a<0時,滿足條件.
綜上可得,a的取值范圍是a≥1或a≤0.
點評:本題考查利用函數(shù)導數(shù)研究函數(shù)的單調(diào)性,體現(xiàn)了分類討論的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011-2012學年江西省景德鎮(zhèn)樂平中學高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù),且.(e是自然對數(shù)的底數(shù))
(1)求a與b的關系式;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年浙江省杭州市學軍中學高二(下)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù),且.(e是自然對數(shù)的底數(shù))
(1)求a與b的關系式;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高三第二次質(zhì)量檢測數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù),且.(e是自然對數(shù)的底數(shù))
(1)求a與b的關系式;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省月考題 題型:解答題

已知函數(shù),且.(e是自然對數(shù)的底數(shù))
(1)求a與b的關系式;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案