已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1)當(dāng)時(shí),的單調(diào)增區(qū)間為;當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為;(2)不存在保值區(qū)間.

【解析】

試題分析:本題主要考查函數(shù)與導(dǎo)數(shù)以及運(yùn)用導(dǎo)數(shù)求單調(diào)區(qū)間、極值等數(shù)學(xué)知識(shí)和方法,考查思維能力、運(yùn)算能力、分析問(wèn)題解決問(wèn)題的能力,考查轉(zhuǎn)化思想和分類(lèi)討論思想.第一問(wèn),先對(duì)求導(dǎo),令,可以看出的單調(diào)區(qū)間是由0和1斷開(kāi)的,現(xiàn)在所求的范圍是,所以將從0斷開(kāi),分兩部分進(jìn)行討論,分別判斷的正負(fù)來(lái)決定的單調(diào)性;第二問(wèn),用反證法證明,先假設(shè)存在保值區(qū)間,先求出,再求導(dǎo),因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032910464832639800/SYS201403291047482795948512_DA.files/image014.png">,所以可以求出最值,即方程有兩個(gè)大于1的相異實(shí)根,下面證明函數(shù)有2個(gè)零點(diǎn),通過(guò)2次求導(dǎo),判斷單調(diào)性和極值確定只有一個(gè)零點(diǎn),所以與有2個(gè)大于1的實(shí)根矛盾,所以假設(shè)不成立,所以不存在保值區(qū)間.

試題解析:(1)當(dāng)時(shí),,此時(shí)的單調(diào)增區(qū)間為

當(dāng)時(shí),,此時(shí)的單調(diào)增區(qū)間為,減區(qū)間為        4分

(2)函數(shù)上不存在保值區(qū)間。     5分

證明如下:

假設(shè)函數(shù)存在保值區(qū)間[a,b]. ,

時(shí),所以為增函數(shù),      所以

即方程有兩個(gè)大于1的相異實(shí)根。            7分

設(shè)

,,所以上單增,又,

即存在唯一的使得                         9分

當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),

所以函數(shù)處取得極小值。又因,

所以在區(qū)間上只有一個(gè)零點(diǎn),              11分

這與方程有兩個(gè)大于1的相異實(shí)根矛盾。

所以假設(shè)不成立,即函數(shù)上不存在保值區(qū)間。    12分

考點(diǎn):1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;2.反證法;3.利用導(dǎo)數(shù)求函數(shù)的極值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)

已知函數(shù)。

   (1):當(dāng)時(shí),求函數(shù)的極小值;

   (2):試討論函數(shù)零點(diǎn)的個(gè)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且若向量與向量共線(xiàn),求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省東莞市第三次月考高一數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù) 

(1)當(dāng)時(shí),求函數(shù)的最大值和最小值;

(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)文科數(shù)學(xué)試卷 題型:解答題

已知函數(shù).().

  (1)當(dāng)時(shí),求函數(shù)的極值;

(2)若對(duì),有成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年吉林省高三上學(xué)期第二次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)當(dāng)時(shí),求的極小值;

(2)設(shè),求的最大值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案