精英家教網 > 高中數學 > 題目詳情

已知函數f(x)的導函數為f′(x),且滿足f(x)=3x2+2xf′(2),則f′(5)=________.

解:f′(x)=6x+2f′(2)
令x=2得
f′(2)=-12
∴f′(x)=6x-24
∴f′(5)=30-24=6
故答案為:6
分析:將f′(2)看出常數利用導數的運算法則求出f′(x),令x=2求出f′(2)代入f′(x),令x=5求出f′(5).
點評:本題考查導數的運算法則、考查通過賦值求出導函數值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

4、已知函數f(x)的導函數f′(x)=a(x+1)(x-a),若f(x)在x=a處取到極大值,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

14、已知函數f(x)的導函數f′(x)=2x-5,且f(0)的值為整數,當x∈(n,n+1](n∈N*)時,f(x)的值為整數的個數有且只有1個,則n=
2

查看答案和解析>>

科目:高中數學 來源: 題型:

18、已知函數f(x)的導數f″(x)滿足0<f′(x)<1,常數a為方程f(x)=x的實數根.
(Ⅰ)若函數f(x)的定義域為M,對任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求證:方程f(x)=x存在唯一的實數根a;
(Ⅱ) 求證:當x>a時,總有f(x)<x成立;
(Ⅲ)對任意x1、x2,若滿足|x1-a|<2,|x2-a|<2,求證:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的導函數為f'(x),且滿足f(x)=2xf'(1)+lnx,則f(1)的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的導函數f′(x)的圖象如圖所示,那么( 。

查看答案和解析>>

同步練習冊答案