若一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,求|x1-x2|和
x1+x2
2
+x13x23的值.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:由韋達定理可得x1+x2=-
b
a
,x1•x2=
c
a
,代入可得|x1-x2|和
x1+x2
2
+x13x23的值.
解答: 解:∵一元二次方程ax2+bx+c=0(a≠0)的兩個根為x1,x2,
∴x1+x2=-
b
a
,x1•x2=
c
a
,
∴|x1-x2|2=(x1-x22=(x1+x22-4x1•x2=
b2
a2
-4×
c
a
=
b2-4ac
a2
,
∴|x1-x2|=
b2-4ac
|a |
,
x1+x2
2
+x13x23=-
b
a
+
b3
a3
=
b3-a2b
a3
點評:本題考查的知識點是二次方程根與系數(shù)的關系(韋達定理),其中根據(jù)韋達定理得到x1+x2=-
b
a
,x1•x2=
c
a
,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)同時具有以下兩個性質(zhì):①f(x)是偶函數(shù),②對任意實數(shù)x,都有f(
π
4
+x)=f(
π
4
-x),則f(x)的解析式可以是( 。
A、f(x)=cosx
B、f(x)=cos(2x+
π
2
C、f(x)=sin(4x+
π
2
D、f(x)=cos6x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

指出函數(shù)f(x)=
3x2
3x-2
(x>
2
3
)的單調(diào)區(qū)間,并求出函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
與x軸、y軸的正半軸分別交于A、B兩點,若△OAB的面積為
3
(其中點O是橢圓的中心),橢圓的離心率為
1
2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)請問:是否存在過點P(0,2
3
)
的直線l與橢圓相交于M,N兩點,使得點N恰好是線段PM的中點,若存在,請求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知
a
=(2mx,y-1),
b
=(2x,y+1)
,其中m∈R,
a
b
,動點M(x,y)的軌跡為C.
(1)求軌跡C的方程,并說明該軌跡方程所表示曲線的形狀;
(2)當m=
1
8
時,設過定點P(0,2)的直線l與軌跡C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

討論函數(shù)f(x)=
ax
1-x2
(-1<x<1,a∈R)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦點F1的坐標為(-1,0),已知橢圓E上的一點到F1、F2兩點的距離之和為4.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的右焦點F2作一條傾斜角為
π
4
的直線交橢圓于C、D,求△CDF1的面積;
(Ⅲ)設點P(4,t)(t≠0),A、B分別是橢圓的左、右頂點,若直線AP、BP分別與橢圓相交異于A、B的點M、N,求證∠MBP為銳角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax2+(a-2)x.
(1)若f(x)在x=0處取得極值,求a值;
(2)求函數(shù)y=f(x)在[a2,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=x2-2013x,若g(a)=g(b),a≠b,則g(a+b)=
 

查看答案和解析>>

同步練習冊答案