【題目】已知函數(shù).其中

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若對于任意,都有恒成立,求的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:求出,令其為,則,由此利用導數(shù)性質(zhì)能求出函數(shù)的單調(diào)區(qū)間;

,求導,分類討論,,和三種情況,求出的取值范圍

解析:(1),令其為,則所以可得單調(diào)遞增,

,則在區(qū)間上,,函數(shù)單調(diào)遞減;在區(qū)間,函數(shù)單調(diào)遞增.

(2),另,可知

,令,

時,結(jié)合對應二次函數(shù)的圖像可知,,即,所以函數(shù)單調(diào)遞減,,時,,時,

可知此時滿足條件.

時,結(jié)合對應二次函數(shù)的圖像可知,可知單調(diào)遞增,,時,,時,,,可知此時不成立.

時,研究函數(shù),可知,對稱軸,

那么在區(qū)間大于0,即在區(qū)間大于0,在區(qū)間單調(diào)遞增,,可知此時,所以不滿足條件.

綜上所述:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠去年某產(chǎn)品的年產(chǎn)量為100萬只,每只產(chǎn)品的銷售價為10元,固定成本為8今年,工廠第一次投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本,預計產(chǎn)量年遞增10萬只,第次投入后,每只產(chǎn)品的固定成本為為常數(shù),,若產(chǎn)品銷售價保持不變,第次投入后的年利潤為萬元.

1)求的值,并求出的表達式;

2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一列非零向量滿足:(其中是非零常數(shù)).

(1)求數(shù)列的通項公式;

(2)求向量夾角的弧度數(shù)

(3),中所有與共線的向量按原來的順序排成一列,記為為坐標原點,求點列的極限點D的坐標.(:若點坐標為則稱點D為點列的極限點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在三棱錐中,,是直角三角形,,

,點分別為的中點.

1)求證:

2)求直線與平面所成角的大。

3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標準是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.

(Ⅰ)求甲乙兩人所付的車費相同的概率;

)設(shè)甲乙兩人所付的車費之和為隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)斜率為的直線交橢圓兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

點P是曲線C1:(x-2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡為曲線C2

(Ⅰ)求曲線C1,C2的極坐標方程;

(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點,設(shè)定點M(2,0),求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點為,是橢圓上半部分的動點,連接和長軸的左右兩個端點所得兩直線交正半軸于兩點(點的上方或重合).

1)當面積最大時,求橢圓的方程;

2)當時,在軸上是否存在點使得為定值,若存在,求點的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案