【題目】某餐廳裝修,需要大塊膠合板張,小塊膠合板張,已知市場(chǎng)出售兩種不同規(guī)格的膠合板。經(jīng)過測(cè)算, 種規(guī)格的膠合板可同時(shí)截得大塊膠合板張,小塊膠合板張, 種規(guī)格的膠合板可同時(shí)截得大塊膠合板張,小塊膠合板張.已知種規(guī)格膠合板每張元, 種規(guī)格膠合板每張元.分別用表示購買兩種不同規(guī)格的膠合板的張數(shù).

(1)用列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)根據(jù)施工需求, 兩種不同規(guī)格的膠合板各買多少張花費(fèi)資金最少?并求出最少資金數(shù).

【答案】(1);(2)種膠合板5張, 種膠合板10張花費(fèi)資金最少,最少資金數(shù)為1720元.

【解析】試題分析:(1)先設(shè)買膠合板, 膠合板付出資金元,根據(jù)大塊膠合板需要20張,小塊膠合板需要50張,抽象出滿足的條件建立約束條件,即可作出可行域;(2根據(jù)目標(biāo)函數(shù),利用截距模型,平移直線找到最優(yōu)解,從而可得出最少資金數(shù).

試題解析:(1膠合板, 膠合板,由題意得到,平面區(qū)域如圖:

2由設(shè)花費(fèi)資金由(1,由圖可知當(dāng)時(shí), (元,答 型木板張, 型木板張,付出資金最少為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)﹣f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)= ,且g[f(x)]≥k對(duì)x∈[﹣1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=a﹣
(1)若x∈[ ,+∞),①判斷函數(shù)g(x)=f(x)﹣2x的單調(diào)性并加以證明;②如果f(x)≤2x恒成立,求a的取值范圍;
(2)若總存在m,n使得當(dāng)x∈[m,n]時(shí),恰有f(x)∈[2m,2n],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若Ai(i=1,2,3,…,n)是△AOB所在平面內(nèi)的點(diǎn),且 = ,給出下列說法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)點(diǎn)A和點(diǎn)Ai一定共線
·(4)向量 在向量 方向上的投影必定相等
其中正確的個(gè)數(shù)是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且b=c,∠A的平分線為AD,若 =m
(1)當(dāng)m=2時(shí),求cosA
(2)當(dāng) ∈(1, )時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有三個(gè)不同的零點(diǎn), , (其中),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于兩個(gè)定義域相同的函數(shù)f(x),g(x),若存在實(shí)數(shù)m、n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個(gè)g(x)=3x+4生成一個(gè)偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1由函數(shù)f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1”生成一個(gè)函數(shù)h(x),使之滿足下列件:①是偶函數(shù);②有最小值1;求函數(shù)h(x)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,且, 是邊長為的正三角形,且平面平面,點(diǎn)的中點(diǎn).

(1)證明: 平面

(2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案