是空間三條不同的直線,則下列命題正確的是( )
解:因為利用空間中點線面的位置關(guān)系可知,選項A中,有平行和相交兩種位置關(guān)系,錯誤
選項C中,利用平行的傳遞性得到平行性的,但是不一定共面。
選項D中,可能構(gòu)成棱錐的母線,錯誤
選B
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖1,在邊長為
的正三角形
中,
,
,
分別為
,
,
上的點,且滿足
.將△
沿
折起到△
的位置,使二面角
成直二面角,連結(jié)
,
.(如圖2)
(Ⅰ)求證:
⊥平面
;
(Ⅱ)求直線
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)如圖多面體PQABCD由各棱長均為2的正四面體和正四棱錐拼接而成
(Ⅰ)證明PQ⊥BC;
(Ⅱ)若M為棱CQ上的點且
,
求
的取值范圍,使得二面角P-AD-M為鈍二面角。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在直三棱柱ABC-A
1B
1C
1中,已知
,M為A
1B與AB
1的交點,N為棱B
1C
1的中點
(1) 求證:MN∥平面AA
1C
1C
(2) 若AC=AA
1,求證:MN⊥平面A
1BC
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(滿分12分)如圖三棱錐
中,
,
,
,平面
平面
。
(1) 求證:
;
(2) 求直線
和面
所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,斜三棱柱ABC—A
1B
1C
1的底面是直角三角形,AC⊥CB,
∠ABC=45°,側(cè)面A
1ABB
1是邊長為
a的菱形,且垂直于底面ABC,∠A
1AB=60°,E、F分別是AB
1、BC的中點.
(1)求證EF//平面A
1ACC
1;
(2)求EF與側(cè)面A
1ABB
1所成的角;
(3)求二面角
的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直角三角形
ABC的直角邊
AB在平面
α內(nèi),頂點
C在
α外,且
C在
α內(nèi)的射影為
C1(
C1不在
AB上),則△
ABC1是
A.直角三角形 | B.銳角三角形 | C.鈍角三角形 | D.以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
平面
且
給出下列四個命題:
①若
則
②若
則
③若
則
④若
則
其中真命題是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知直線
,有下面四個命題:
(1)
;(2)
;(3)
;(4)
其中正確的命題______________。
查看答案和解析>>