A. | $[\frac{2}{3},2)$ | B. | $(\frac{2}{3},2]$ | C. | $[1,\frac{4}{3}]$ | D. | $(1,\frac{4}{3})$ |
分析 由x∈[0,$\frac{π}{4}$],可求得f(x)∈[1,2],g(x)∈[-$\frac{3m}{2}$+3,3-m],依題意,對(duì)任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,可得到關(guān)于m的不等式組,解之可求得實(shí)數(shù)m的取值范圍.
解答 解:∵$\overrightarrow a=(2cosx,\sqrt{3}),\overrightarrow b=(sinx,cos2x)$,f(x)=$\overrightarrow a•\overrightarrow b$,
∴f(x)=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
∵當(dāng)x∈[0,$\frac{π}{4}$],2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],可得:sin(2x+$\frac{π}{3}$)∈[1,2],
∴f(x)∈[1,2],
對(duì)于g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],mcos(2x-$\frac{π}{6}$)∈[$\frac{m}{2}$,m],
∴g(x)∈[-$\frac{3m}{2}$+3,3-m],
若對(duì)任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,
則1≤-$\frac{3m}{2}$+3,且3-m≤2,
解得實(shí)數(shù)m的取值范圍是[1,$\frac{4}{3}$].
故選:C.
點(diǎn)評(píng) 本題考查兩角和與差的正弦函數(shù),著重考查三角函數(shù)的性質(zhì)的運(yùn)用,考查二倍角的余弦,解決問題的關(guān)鍵是理解“對(duì)任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立”的含義,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1,-\frac{4}{3}$ | B. | $4,-\frac{4}{3}$ | C. | $4,\frac{4}{3}$ | D. | $\frac{4}{3},-4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{4}$或$-\frac{1}{12}$ | D. | $-\frac{1}{4}$或$\frac{1}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com