【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個動點(diǎn),且滿足.設(shè)線段的中點(diǎn)上的投影為,則的最大值是_______.

【答案】A

【解析】

試題設(shè)|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=a+b2﹣3ab,進(jìn)而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.

解:設(shè)|AF|=a,|BF|=b,連接AF、BF,

由拋物線定義,得|AF|=|AQ|,|BF|=|BP|

在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b

由余弦定理得,

|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab,

配方得,|AB|2=a+b2﹣3ab,

∵ab≤,

a+b2﹣3ab≥a+b2a+b2=a+b2

得到|AB|≥a+b).

≤1,

的最大值為1

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 在區(qū)間[﹣k,k](k>0)上的值域為[m,n],則m+n等于(
A.0
B.2
C.4
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知min{{a,b}= f(x)=min{|x|,|x+t|},函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱;若“x∈[1,+∞),ex>2mex”是真命題(這里e是自然對數(shù)的底數(shù)),則當(dāng)實(shí)數(shù)m>0時,函數(shù)g(x)=f(x)﹣m零點(diǎn)的個數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(2x+φ)(|φ< |)的圖象向左平移 個單位后關(guān)于原點(diǎn)對稱,求函數(shù)f(x)在[0, ]上的最小值為(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年,嘉積中學(xué)即將迎來100周年校慶.為了了解在校同學(xué)們對嘉積中學(xué)的看法,學(xué)校進(jìn)行了調(diào)查,從三個年級任選三個班,同學(xué)們對嘉積中學(xué)的看法情況如下:

對嘉積中學(xué)的看法

非常好,嘉積中學(xué)奠定了
我一生成長的起點(diǎn)

很好,我的中學(xué)很快樂很充實(shí)

A班人數(shù)比例

B班人數(shù)比例

C班人數(shù)比例

(Ⅰ)從這三個班中各選一個同學(xué),求恰好有2人認(rèn)為嘉積中學(xué)“非常好”的概率(用比例作為相應(yīng)概率);
(Ⅱ)若在B班按所持態(tài)度分層抽樣,抽取9人,在這9人中任意選取3人,認(rèn)為嘉積中學(xué)“非常好”的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示值域為R的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間.例如,當(dāng),時,,.現(xiàn)有如下命題:

設(shè)函數(shù)的定義域為,則的充要條件是,;

函數(shù)的充要條件是有最大值和最小值;

若函數(shù),的定義域相同,且,,則;

若函數(shù))有最大值,則.

其中的真命題有 .(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖象上存在不同的兩點(diǎn) ,使得曲線 在這兩點(diǎn)處的切線重合,則實(shí)數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,已知曲線 為參數(shù)),以平面直角坐標(biāo)系 的原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線 .
(1)將曲線 上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的 、2倍后得到曲線 ,試寫出直線 的直角坐標(biāo)方程和曲線 的參數(shù)方程;
(2)在曲線 上求一點(diǎn) ,使點(diǎn) 到直線 的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+a(x﹣1),其中a∈R. (Ⅰ) 當(dāng)a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范圍.
(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

同步練習(xí)冊答案