9.若Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)的和,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{3n+8}$,$\frac{{a}_{5}}{_{5}}$=( 。
A.$\frac{2}{3}$B.$\frac{17}{35}$C.$\frac{1}{2}$D.$\frac{9}{23}$

分析 由等差數(shù)列的性質(zhì)可得:$\frac{{a}_{5}}{_{5}}$=$\frac{{S}_{9}}{{T}_{9}}$,即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:$\frac{{a}_{5}}{_{5}}$=$\frac{\frac{9({a}_{1}+{a}_{9})}{2}}{\frac{9(_{1}+_{9})}{2}}$=$\frac{{S}_{9}}{{T}_{9}}$=$\frac{2×9-1}{3×9+8}$=$\frac{17}{35}$.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.等差數(shù)列{an}公差不為零,且a1,a3,a7是等比數(shù)列{bn}的相鄰三項(xiàng),則{bn}的公比為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知等差數(shù)列{an}中,a1+a7=16,a3a5=60,則a11-a9等于( 。
A.2B.-2或2C.4D.-4或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在等比數(shù)列{an}中,若a2=3,q=2,則a5=( 。
A.9B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列說(shuō)法不正確的個(gè)數(shù)為(  )
①演繹推理是一般到特殊的推理;②演繹推理得到的結(jié)論一定正確;③合情推理是演繹推理的前提,演繹推理是合情推理的可靠性.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=x-lnx+2k,在區(qū)間[$\frac{1}{e}$,e]上任取三個(gè)數(shù)a,b,c均存在以f(a),f(b),f(c)為邊長(zhǎng)的三角形,則k的取值范圍是( 。
A.(-1,+∞)B.(-∞,1)C.(-∞,e-3)D.($\frac{e-3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3,S2n=10,則S3n=( 。
A.13B.17C.21D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)y=2sin(2x-$\frac{π}{4}$)(x∈R)
(1)利用五點(diǎn)法作出x∈[${\frac{π}{8},\frac{9π}{8}}$]上的圖象;
(2)求出f(x)的最大值,以及使函數(shù)取得最大值時(shí)自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f1(x)=|x-1|,f2(x)=$\frac{1}{3}$x+1,g(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$+$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$,若a,b∈[-1,5],且當(dāng)x1,x2∈[a,b](x1≠x2)時(shí),$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,則b-a的最大值為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案