【題目】要得到函數(shù)y=sinx的圖象,只要將函數(shù)y=cos2x的圖象(  )
A.向右平移個單位長度,再將各點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變
B.向左平移個單位長度,再將各點的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變
C.向左平移個單位長度,再將各點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變
D.向右平移個單位長度,再將各點的橫坐標(biāo)縮短到原來的 , 縱坐標(biāo)不變

【答案】A
【解析】解:將函數(shù)y=cos2x=sin(2x+)的圖象向右平移個單位長度,可得y=sin[2(x﹣)+]=sin2x的圖象,
再將各點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,可得函數(shù)y=sinx的圖象,
故選:A.
由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市市民用水?dāng)M實行階梯水價,每人用水量不超過立方米的部分按/立方米收費,超出立方米的部分按/立方米收費,從該市隨機調(diào)查了位市民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖,并且前四組頻數(shù)成等差數(shù)列,

(Ⅰ)求的值及居民用水量介于的頻數(shù);

(Ⅱ)根據(jù)此次調(diào)查,為使以上居民月用水價格為/立方米,應(yīng)定為多少立方米?(精確到小數(shù)點后位)

(Ⅲ)若將頻率視為概率,現(xiàn)從該市隨機調(diào)查名居民的用水量,將月用水量不超過立方米的人數(shù)記為,求其分布列及其均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點F1(﹣c,0),F(xiàn)2(c,0)分別是橢圓C: (a>b>0)的左右焦點,經(jīng)過F1做x軸的垂線交橢圓C的上半部分于點P,過點F2作直線PF2垂線交直線 于點Q.
(Ⅰ)如果點Q的坐標(biāo)是(4,4),求此時橢圓C的方程;
(Ⅱ)證明:直線PQ與橢圓C只有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},則關(guān)于x的不等式bx2-ax-2>0的解集為(  )

A. {x|-2<x<1} B. {x|x>1或x<-2}

C. {x|x>2或x<-1} D. {x|x<-1或x>1}

【答案】B

【解析】

利用不等式的解集與方程根的關(guān)系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.

關(guān)于x的不等式ax2+bx+2>0的解集為(﹣1,2),

﹣1,2是ax2+bx+2=0(a<0)的兩根

∴a=﹣1,b=1

不等式bx2﹣ax﹣2>0為x2+x﹣2>0,

∴x<﹣2或x>1

故選:B.

【點睛】

(1)二次函數(shù)圖象與x軸交點的橫坐標(biāo)、二次不等式解集的端點值、一元二次方程的解是同一個量的不同表現(xiàn)形式。

2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個二次”的核心,通過二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法.

型】單選題
結(jié)束】
6

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】單選題
結(jié)束】
9

【題目】等比數(shù)列{an}是遞減數(shù)列,前n項的積為Tn,若T13=4T9,則a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的偶函數(shù)f(x)滿足對任意的x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時,f(x)=﹣(x﹣2)2+1.若函數(shù)y=f(x)﹣a(x﹣)在(0,+∞)上恰有三個零點,則實數(shù)a的取值范圍是(  )
A.( , 3)
B.(
C.(3,12)
D.( , 12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為

(I)請完成列聯(lián)表

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過0.01的前提下認為成績與班級有關(guān)系?

參考公式和臨界值表

,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).

(1)若,且a分別與垂直,求向量a的坐標(biāo);

(2)若,且,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點

1)求圓的圓心坐標(biāo);

2)求線段的中點的軌跡的方程;

3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案