【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
(I)請完成列聯(lián)表
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(Ⅱ)根據列聯(lián)表的數(shù)據能否在犯錯誤的概率不超過0.01的前提下認為成績與班級有關系?
參考公式和臨界值表
,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】(本小題14分)已知四棱錐P-ABCD,底面ABCD是、邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD;
(3)求點A到平面PMB的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,內角A、B、C的對邊分別是a、b、c,且2cos2+sin2A=1.
(Ⅰ)求A;
(Ⅱ)設a=2-2,△ABC的面積為2,求b+c的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)y=sinx的圖象,只要將函數(shù)y=cos2x的圖象( 。
A.向右平移個單位長度,再將各點的橫坐標伸長為原來的4倍,縱坐標不變
B.向左平移個單位長度,再將各點的橫坐標縮短為原來的倍,縱坐標不變
C.向左平移個單位長度,再將各點的橫坐標伸長為原來的4倍,縱坐標不變
D.向右平移個單位長度,再將各點的橫坐標縮短到原來的 , 縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)若棱AP的中點為H,證明:HE∥平面ABCD;
(2)求二面角A﹣PB﹣E的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=ax2+bx-ln x的導函數(shù)的零點分別為1和2.
(I) 求a , b的值;
(Ⅱ)若當時,恒成立, 求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,側棱SD⊥底面ABCD,點E是SC的中點,點F在SB上,且EF⊥SB.
(1)求證:SA∥平面BDE;
(2)求證SB⊥平面DEF;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)=ex , 其中e是白然對數(shù)的底數(shù),e=2.71828…
(I)若函數(shù)φ(x)=f(x)﹣求函數(shù)φ(x)的單調區(qū)間;
(Ⅱ)設直線l為函數(shù)f(x)的圖象上一點A(x0 , f(x0)處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0 , 使得直線l與曲線y=g(x)相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,C、D是圓O上的兩個點,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧的中點;
(Ⅱ)求證:BF=FG.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com