正方體ABCD-A1B1C1D1中.
(1)求證:平面A1BD∥平面B1D1C;
(2)若E、F分別是AA1,CC1的中點,求證:平面EB1D1∥平面FBD.

【答案】分析:(1)有B1B∥DD1⇒B1D1∥BD平⇒面A1BD∥平面B1CD.
(2)由AE∥B1G⇒B1E∥AG,再由AG∥DF⇒B1E∥DF,B1E∥DF⇒DF∥平面EB1D1
解答:證明:(1)由B1B∥DD1,得四邊形BB1D1D是平行四邊形,
∴B1D1∥BD,
又BDË平面B1D1C,B1D1∥平面B1D1C,
∴BD∥平面B1D1C.
同理A1D∥平面B1D1C.
而A1D∩BD=D,
∴平面A1BD∥平面B1CD.
(2)由BD∥B1D1,得BD∥平面EB1D1
取BB1中點G,∴AE∥B1G.
從而得B1E∥AG,同理GF∥AD.
∴AG∥DF.
∴B1E∥DF.
∴DF∥平面EB1D1
∴平面EB1D1∥平面FBD.
點評:要證“面面平行”只要證“線面平行”,要證“線面平行”,只要證“線線平行”,故問題最終轉(zhuǎn)化為證線與線的平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設(shè)點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值( 。

查看答案和解析>>

同步練習(xí)冊答案