【題目】在棱長均為的四面體中,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn).若點(diǎn),是平面內(nèi)的兩動點(diǎn),且,,則的面積為( )

A. B. 3

C. D. 2

【答案】C

【解析】

建立空間直角坐標(biāo)系,寫出B,E,F的坐標(biāo)設(shè)M(x,y,0)的坐標(biāo),由,得出M的軌跡,同理得出N的軌跡,由,即可得到的面積.

建立空間直角坐標(biāo)系如圖所示

,底面為等邊三角形,.所以O(shè)D=2,B(-,-1,0),D(0,2,0),C(,-1,0),點(diǎn)的中點(diǎn),所以E(,,0),點(diǎn)的中點(diǎn),F(xiàn)(- ,- ,0),設(shè)M(x,y,0),, ,化簡得 ,且點(diǎn)M 是平面BCD 內(nèi)的動點(diǎn),所以點(diǎn)M在以(0,0)為圓心,以1為半徑的圓上,又,且點(diǎn)N 是平面BCD 內(nèi)的動點(diǎn),同理N也在這個(gè)圓上,所以MN為圓的直徑,因?yàn)锳O面BCD,所以AOMN,且AO=, .

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線C1的普通方程為,曲線C2參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

(1)求C1的參數(shù)方程和的直角坐標(biāo)方程;

(2)已知P是C2上參數(shù)對應(yīng)的點(diǎn),Q為C1上的點(diǎn),求PQ中點(diǎn)M到直線的距離取得最大值時(shí),點(diǎn)Q的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點(diǎn),點(diǎn)上,且軸.

(1)求的方程;

(2)過的直線兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),當(dāng)時(shí),函數(shù)有極值

1)求函數(shù)的解析式;

2)求函數(shù)的極值;

3)若關(guān)于的方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面底面ABCD是等邊三角形,底面ABCD為梯形,且,,

證明:;

A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人獨(dú)立破譯同一密碼,甲破譯密碼的概率為,乙破譯密碼的概率為.記事件A:甲破譯密碼,事件B:乙破譯密碼.

1)求甲、乙二人都破譯密碼的概率;

2)求恰有一人破譯密碼的概率;

3)小明同學(xué)解答“求密碼被破譯的概率”的過程如下:

解:“密碼被破譯”也就是“甲、乙二人中至少有一人破譯密碼”所以隨機(jī)事件“密碼被破譯”可以表示為所以

請指出小明同學(xué)錯誤的原因?并給出正確解答過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國大能手”是央視推出的一檔大型職業(yè)技能挑戰(zhàn)賽類節(jié)目,旨在通過該節(jié)目,在全社會傳播和弘揚(yáng)“勞動光榮、技能寶貴、創(chuàng)造偉大”的時(shí)代風(fēng)尚.某公司準(zhǔn)備派出選手代表公司參加“中國大能手”職業(yè)技能挑戰(zhàn)賽.經(jīng)過層層選拔,最后集中在甲、乙兩位選手在一項(xiàng)關(guān)鍵技能的區(qū)分上,選手完成該項(xiàng)挑戰(zhàn)的時(shí)間越少越好.已知這兩位選手在15次挑戰(zhàn)訓(xùn)練中,完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)所用的時(shí)間(單位:秒)及挑戰(zhàn)失。ㄓ谩啊痢北硎荆┑那闆r如下表1:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

×

96

93

×

92

×

90

86

×

×

83

80

78

77

75

×

95

×

93

×

92

×

88

83

×

82

80

80

74

73

據(jù)上表中的數(shù)據(jù),應(yīng)用統(tǒng)計(jì)軟件得下表2:

均值(單位:秒)方差

方差

線性回歸方程

85

50.2

84

54

(1)根據(jù)上述回歸方程,預(yù)測甲、乙分別在下一次完成該項(xiàng)關(guān)鍵技能挑戰(zhàn)所用的時(shí)間;

(2)若該公司只有一個(gè)參賽名額,根據(jù)以上信息,判斷哪位選手代表公司參加職業(yè)技能挑戰(zhàn)賽更合適?請說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的最大值;

2)如果函數(shù)在公共定義域D上,滿足,那么就稱伴隨函數(shù)”.已知函數(shù),.若在區(qū)間上,函數(shù)伴隨函數(shù),求實(shí)數(shù)的取值范圍;

3)若,正實(shí)數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)是否存在正實(shí)數(shù),使得對任意,都有,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由;

(Ⅲ)當(dāng)時(shí), ,對恒成立,求整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案