【題目】已知,,其中常數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍;
(3)設(shè),在區(qū)間內(nèi)是否存在區(qū)間,使函數(shù)在區(qū)間的值域也是?請(qǐng)給出結(jié)論,并說(shuō)明理由.
【答案】(1)極小值0,沒(méi)有極大值;(2);(3)不存在區(qū)間符合要求,理由見解析.
【解析】
(1)求出導(dǎo)函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出極值;
(2)求出導(dǎo)函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,得到有兩個(gè)零點(diǎn)的條件,求出的范圍;
(3)先根據(jù)導(dǎo)數(shù)判斷在單調(diào)遞增,將在區(qū)間的值域也是,轉(zhuǎn)化為有兩個(gè)大于的不等實(shí)根解決問(wèn)題.
函數(shù)的定義域?yàn)?/span>,
(1)當(dāng)時(shí),,,
而在上單調(diào)遞增,又,
當(dāng)時(shí),,則在上單調(diào)遞減;
當(dāng)時(shí),,則在上單調(diào)遞增,所以有極小值,沒(méi)有極大值.
(2)令, ,因?yàn)?/span>,所以
0 | |||
增 | 減 |
因?yàn)?/span>有兩個(gè)零點(diǎn),所以,所以
當(dāng)時(shí)因?yàn)?/span>,,所以有兩個(gè)零點(diǎn).
(3),假設(shè)在區(qū)間內(nèi)是存在區(qū)間,使函數(shù)在區(qū)間的值域也是,因?yàn)?/span>,當(dāng)時(shí)
所以在上是增函數(shù),所以,即
即方程有兩個(gè)大于的不等實(shí)根.上述方程等價(jià)于
設(shè),所以
所以在上是增函數(shù),所以上至多一個(gè)實(shí)數(shù)根.
即上不可能有兩個(gè)不等實(shí)數(shù)根,所以假設(shè)不成立,所以不存在區(qū)間符合要求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中, , , 為的中點(diǎn).
(1)證明: 平面;
(2)若,點(diǎn)在平面的射影在上,且側(cè)面的面積為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且其離心率為,過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于,兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離的比值為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),,設(shè)點(diǎn),到直線的距離分別為,,當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在測(cè)試中,客觀題難題的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):
(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);
(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;
(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度().規(guī)定:若,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為廣泛開展垃圾分類的宣傳教育和倡導(dǎo)工作,使市民樹立垃圾分類的環(huán)保意識(shí),學(xué)會(huì)垃圾分類的知識(shí),特舉辦了“垃圾分類知識(shí)競(jìng)賽".據(jù)統(tǒng)計(jì),在為期1個(gè)月的活動(dòng)中,共有兩萬(wàn)人次參與網(wǎng)絡(luò)答題.市文明實(shí)踐中心隨機(jī)抽取100名參與該活動(dòng)的市民,以他們單次答題得分作為樣本進(jìn)行分析,由此得到如圖所示的頻率分布直方圖:
(1)求圖中a的值及參與該活動(dòng)的市民單次挑戰(zhàn)得分的平均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);
(2)若垃圾分類答題挑戰(zhàn)賽得分落在區(qū)間之外,則可獲得一等獎(jiǎng)獎(jiǎng)勵(lì),其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得,若某人的答題得分為96分,試判斷此人是否獲得一等獎(jiǎng);
(3)為擴(kuò)大本次“垃圾分類知識(shí)競(jìng)賽”活動(dòng)的影響力,市文明實(shí)踐中心再次組織市民組隊(duì)參場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽,競(jìng)賽共分五輪進(jìn)行,已知“光速隊(duì)”與“超能隊(duì)”五輪的成績(jī)?nèi)缦卤恚?/span>
成績(jī) | 第一輪 | 第二輪 | 第三輪 | 第四輪 | 第五輪 |
“光速隊(duì)” | 93 | 98 | 94 | 95 | 90 |
“超能隊(duì)” | 93 | 96 | 97 | 94 | 90 |
①分別求“光速隊(duì)”與“超能隊(duì)”五輪成績(jī)的平均數(shù)和方差;
②以上述數(shù)據(jù)為依據(jù),你認(rèn)為"光速隊(duì)”與“超能隊(duì)”的現(xiàn)場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽成績(jī)誰(shuí)更穩(wěn)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4.
(1)求橢圓的方程;
(2)已知過(guò)的直線與橢圓交于、兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x與y之間的幾組數(shù)據(jù)如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對(duì)m賦了三個(gè)值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,,對(duì)應(yīng)的相關(guān)系數(shù)分別為,,,下列結(jié)論中錯(cuò)誤的是( )
參考公式:線性回歸方程中,其中,.相關(guān)系數(shù).
A.三條回歸直線有共同交點(diǎn)B.相關(guān)系數(shù)中,最大
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)為了調(diào)查本小區(qū)業(yè)主對(duì)物業(yè)服務(wù)滿意度的真實(shí)情況,對(duì)本小區(qū)業(yè)主進(jìn)行了調(diào)查,調(diào)查中問(wèn)了兩個(gè)問(wèn)題1:你的手機(jī)尾號(hào)是不是奇數(shù)?問(wèn)題2:你是否滿意物業(yè)的服務(wù)?調(diào)查者設(shè)計(jì)了一個(gè)隨機(jī)化裝置,其中裝有大小、形狀和質(zhì)量完全相同的白球和紅球,每個(gè)被調(diào)查者隨機(jī)從裝置中摸到紅球和白球的可能性相同,其中摸到白球的業(yè)主回答第一個(gè)問(wèn)題,摸到紅球的業(yè)主回答第二個(gè)問(wèn)題,回答“是”的人往一個(gè)盒子中放一個(gè)小石子,回答“否”的人什么都不要做由于問(wèn)題的答案只有“是”和“否”,而且回答的是哪個(gè)問(wèn)題別人并不知道,因此被調(diào)查者可以毫無(wú)顧慮地給出符合實(shí)際情況的答案.已知某小區(qū)80名業(yè)主參加了問(wèn)卷,且有47名業(yè)主回答了“是”,由此估計(jì)本小區(qū)對(duì)物業(yè)服務(wù)滿意的百分比大約為( )
A.85%B.75%C.63.5%D.67.5%
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com