A. | $({0,\frac{{\sqrt{2}}}{2}}]$ | B. | $[{\frac{{\sqrt{2}}}{2},+∞})$ | C. | $({-∞,-\frac{{\sqrt{2}}}{2}}]$,$({0,\frac{{\sqrt{2}}}{2}}]$ | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |
分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)小于0求出自變量x在定義域內(nèi)的取值范圍,則原函數(shù)的單調(diào)減區(qū)間可求.
解答 解:由f(x)=x2-lnx,得:f′(x)=(x2-lnx)′=2x-$\frac{1}{x}$=$\frac{{2x}^{2}-1}{x}$,
因為函數(shù)f(x)=x2-lnx的定義域為(0,+∞),
由f′(x)≤0,得:$\frac{{2x}^{2}-1}{x}$≤0,
解得:0<x<$\frac{\sqrt{2}}{2}$.
所以函數(shù)f(x)=x2-lnx的單調(diào)遞減區(qū)間是(0,$\frac{\sqrt{2}}{2}$],
故選:A.
點評 本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 已知購買一張彩票中獎的概率為$\frac{1}{1000}$,則購買1000張這種彩票一定能中獎 | |
B. | 互斥事件一定是對立事件 | |
C. | 如圖,直線l是變量x和y的線性回歸方程,則變量x和y相關(guān)系數(shù)在-1到0之間 | |
D. | 若樣本x1,x2,…xn的方差是4,則x1-1,x2-1,…xn-1的方差是3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A. | 0.1 | B. | 0.05 | C. | 0.01 | D. | 0.001 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-1 | B. | 1或3n-1 | C. | 3n | D. | 3n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | -$\sqrt{2}$ | C. | -$\frac{\sqrt{6}}{6}$ | D. | -$\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i<9? | B. | i<10? | C. | i<11? | D. | i<12? 2i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com