9.函數(shù)f(x)=x2-lnx的單調(diào)遞減區(qū)間是( 。
A.$({0,\frac{{\sqrt{2}}}{2}}]$B.$[{\frac{{\sqrt{2}}}{2},+∞})$C.$({-∞,-\frac{{\sqrt{2}}}{2}}]$,$({0,\frac{{\sqrt{2}}}{2}}]$D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)小于0求出自變量x在定義域內(nèi)的取值范圍,則原函數(shù)的單調(diào)減區(qū)間可求.

解答 解:由f(x)=x2-lnx,得:f′(x)=(x2-lnx)′=2x-$\frac{1}{x}$=$\frac{{2x}^{2}-1}{x}$,
因為函數(shù)f(x)=x2-lnx的定義域為(0,+∞),
由f′(x)≤0,得:$\frac{{2x}^{2}-1}{x}$≤0,
解得:0<x<$\frac{\sqrt{2}}{2}$.
所以函數(shù)f(x)=x2-lnx的單調(diào)遞減區(qū)間是(0,$\frac{\sqrt{2}}{2}$],
故選:A.

點評 本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點P(1,1)(且傾斜角為45°的直線被圓(x-2)2+(y-1)2=2所截的弦長是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC的三個頂點是A(4,0),B(6,7),C(0,3).
(1)求過點A與BC平行的直線方程.
(2)求過點B,并且在兩個坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是(  )
A.已知購買一張彩票中獎的概率為$\frac{1}{1000}$,則購買1000張這種彩票一定能中獎
B.互斥事件一定是對立事件
C.如圖,直線l是變量x和y的線性回歸方程,則變量x和y相關(guān)系數(shù)在-1到0之間
D.若樣本x1,x2,…xn的方差是4,則x1-1,x2-1,…xn-1的方差是3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知正方形ABCD的邊長為3,E為CD的中點,則$\overrightarrow{AE}•\overrightarrow{BD}$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某科研機構(gòu)為了研究中年人禿發(fā)與心臟病是否有關(guān),隨機調(diào)查了一些中年人的情況,具體數(shù)據(jù)如表:根據(jù)表中數(shù)據(jù)得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因為K2≥10.828,則斷定禿發(fā)與心臟病有關(guān)系,那么這種判斷出錯的可能性為(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.0.1B.0.05C.0.01D.0.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等比數(shù)列{an}的前n項和為Sn,a1=1,若3S1,2S2,S3成等差數(shù)列,則an=( 。
A.2n-1B.1或3n-1C.3nD.3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,P為橢圓M上任一點,且|PF1|•|PF2|的最大值的取值范圍是[2b2,3b2],橢圓M的離心率為e,則e-$\frac{1}{e}$的最小值是( 。
A.-$\frac{\sqrt{2}}{2}$B.-$\sqrt{2}$C.-$\frac{\sqrt{6}}{6}$D.-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的框圖,若輸出的sum的值為2047,則條件框中應(yīng)填寫的是( 。
A.i<9?B.i<10?C.i<11?D.i<12?
2i

查看答案和解析>>

同步練習(xí)冊答案