【題目】己知函數(shù)(是常數(shù),且).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)當在處取得極值時,若關(guān)于的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(3)求證:當,時,.
【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間是;
(2)實數(shù)的取值范圍為;
(3)證明見詳解;
【解析】
(1)先求導,再根據(jù)導數(shù)與函數(shù)的單調(diào)性的關(guān)系即可得到.
(2)在處取得極值,可得,解得,關(guān)于的方程化為,令(),利用導數(shù)研究單調(diào)性極值與最值,關(guān)于的方程在上恰有兩個不相等的實數(shù)根,必須滿足解得即可.
(3)由(1)和(2)可知當時,,即,可得當時,,令,則,利用“累加法求和”、對數(shù)的運算性質(zhì)、放縮、“裂項求和”即可證出.
(1)
若,則,
若,則,
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間是.
(2)在處取得極值,
,解得,
,
關(guān)于的方程化為,
令(),
,
令,解得或,
令,解得,此時函數(shù)單調(diào)遞增,
令,解得,此時函數(shù)單調(diào)遞減,
關(guān)于的方程在上恰有兩個不相等的實數(shù)根,
則,即,解得,
實數(shù)的取值范圍為.
(3)由(1)和(2)可知,當時,,即,
當時,,
令,則,
依次取,
累加求和可得
,
當時,,
,
,
當,時,
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)為曲線上的動點,點在線段上,且滿足,求點的軌跡的直角坐標方程;
(2)設點的極坐標為,點在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過雙曲線的左焦點作圓的切線交雙曲線的右支于點,且切點為,已知為坐標原點,為線段的中點(點在切點的右側(cè)),若的周長為,則雙曲線的漸近線的方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意實數(shù),,,給出下列命題,其中真命題是( )
A.“”是“”的充要條件B.“”是“”的充分條件
C.“”是“”的必要條件D.“是無理數(shù)”是“是無理數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列前項和為,且滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列前項和;
(3)在數(shù)列中,是否存在連續(xù)的三項,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取件產(chǎn)品,統(tǒng)計其質(zhì)量指標值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標值位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤;
(2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.
表中,,,.
根據(jù)散點圖判斷,可以作為年銷售量(萬件)關(guān)于年營銷費用(萬元)的回歸方程.
①求關(guān)于的回歸方程;
②用所求的回歸方程估計該企業(yè)每年應投入多少營銷費,才能使得該企業(yè)的年收益的預報值達到最大?(收益銷售利潤營銷費用,取)
附:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A,B是拋物線C:y2=4x上兩點,線段AB的垂直平分線與x軸有唯一的交點P(x0,0).
(1)求證:x0>2;
(2)若直線AB過拋物線C的焦點F,且|AB|=10,求|PF|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(I)若,函數(shù)的極大值為,求實數(shù)的值;
(Ⅱ)若對任意的 在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com