【題目】已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.
證明:直線與圓相切;
求面積的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,極坐標系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.
(1)分別寫出的極坐標方程;
(2)直線的參數(shù)方程為(為參數(shù)),點的直角坐標為,若直線與曲線有兩個不同交點,求實數(shù)的取值范圍,并求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線(,)的一條漸近線方程為,點在雙曲線上;拋物線()的焦點F與雙曲線的右焦點重合.
(1)求雙曲線和拋物線的標準方程;
(2)過焦點F作一條直線l交拋物線于A,B兩點,當直線l的斜率為時,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點Pn(an,bn)滿足an+1=an·bn+1,bn+1=(n∈N*),且點P1的坐標為(1,-1).
(1)求過點P1,P2的直線l的方程;
(2)試用數(shù)學歸納法證明:對于n∈N*,點Pn都在(1)中的直線l上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關,現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計算得:
,,線性回歸模型的殘差平方和,,
其中分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),
(1)若用線性回歸模型,求y關于x的回歸方程(精確到0.1);
(2)若用非線性回歸模型求得y關于x的回歸方程為,且相關指數(shù).
①試與1中的回歸模型相比,用說明哪種模型的擬合效果更好.
②用擬合效果好的模型預測溫度為35℃時該用哪種藥用昆蟲的產(chǎn)卵數(shù)(結果取整數(shù))
附:一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計為,;相關指數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程選講
在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為.
(Ⅰ)寫出曲線和直線的直角坐標方程;
(Ⅱ)設直線過點與曲線交于不同兩點,的中點為,與的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)(是常數(shù),且).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)當在處取得極值時,若關于的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(3)求證:當,時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標方程;
(2)設曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com