20.小張、小王、小李三名大學(xué)生到三個城市去實習(xí),每人只去一個城市,設(shè)事件A為“三個人去的城市都不同”事件B為“小張單獨去了一個城市”,則P(A|B)=( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

分析 這是求小張單獨去了一個城市的前提下,三個人去的城市都不同的概率,求出相應(yīng)基本事件的個數(shù),即可得出結(jié)論.

解答 解:小張單獨去了一個城市,則有3個城市可選,小王、小李只能在小張剩下的兩個城市中選擇,可能性為2×2=4 
所以小張單獨去了一個城市的可能性為3×2×2=12
因為三個人去的城市都不同的可能性為3×2×1=6,
所以P(A|B)=$\frac{6}{12}$=$\frac{1}{2}$.
故選:D.

點評 本題考查條件概率,考查學(xué)生的計算能力,確定基本事件的個數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\int_{-\frac{π}{2}}^{\frac{π}{2}}$(2x-sinx)dx=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題:
①已知a,b,m都是正數(shù),并且a<b,則$\frac{a+m}{b+m}$>$\frac{a}$;
②在△ABC中,角A,B,C的對邊分別為a,b,c,若∠A=60°,a=7,b=8,則三角形有一解;
③若函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,則f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)=5;
④在等比數(shù)列{an}中,a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(其中n∈N*,q為公比);
⑤如圖,在正方體ABCD-A1B1C1D1中,點M,N分別是CD,CC1的中點,則異面直線A1M與DN所成角的大小是90°.
其中真命題有①③⑤(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i為虛數(shù)單位,則($\frac{1+i}{1-i}$)2=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解“網(wǎng)絡(luò)游戲?qū)Ξ敶嗌倌甑挠绊憽弊隽艘淮握{(diào)查,共調(diào)查了26名男同學(xué)、24名女孩同學(xué).調(diào)查的男生中有8人不喜歡玩電腦游戲,其余男生喜歡玩電腦游戲;而調(diào)查的女生中有9人喜歡玩電腦游戲,其余女生不喜歡電腦游戲.
(1)根據(jù)以上數(shù)據(jù)填寫如下2×2的列聯(lián)表:
性別
對游戲態(tài)度
男生女生合計
喜歡玩電腦游戲18927
不喜歡玩電腦游戲81523
合計262450
(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.025的前提下認為“喜歡玩電腦游戲與性別關(guān)系”?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.050.0250.010
k03.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.甲、乙、丙三人準備報考某大學(xué),假設(shè)甲考上的概率為$\frac{2}{5}$,甲,丙兩都考不上的概率為$\frac{6}{25}$,乙,丙兩都考上的概率為$\frac{3}{10}$,且三人能否考上相互獨立.
(Ⅰ)求乙、丙兩人各自考上的概率;
(Ⅱ)設(shè)X表示甲、乙、丙三人中考上的人數(shù)與沒考上的人數(shù)之差的絕對值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市舉辦校園足球賽,組委會為了做好服務(wù)工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡.
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡看足球比賽不喜歡看足球比賽總計
總計
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜歡看足球比賽有關(guān)?
(3)在志愿者中,有兩男兩女能做播音員工作,恰有一男一女播音的概率是多少?
附:參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.40.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若曲線f(x)=ax+ex存在垂直于y軸的切線,則實數(shù)a的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=4,點F為C1D1的中點,點E在CC1上,且CE=1.
(Ⅰ)證明:AE⊥平面A1BD;
(Ⅱ)求二面角F-A1D-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案