【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位: )和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中,.

(1)根據(jù)散點(diǎn)圖判斷, 哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為.根據(jù)(2)的結(jié)果要求:年宣傳費(fèi)為何值時(shí),年利潤(rùn)最大?

附:對(duì)于一組數(shù)據(jù) ,…, 其回歸直線的斜率和截距的最小二乘估計(jì)分別為, .

【答案】(1)(2)(3)46.24

【解析】試題分析:由散點(diǎn)圖的連線,類似于函數(shù),所以選取作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型.求出d和c的值,寫(xiě)出關(guān)于的回歸方程即可;列出年利潤(rùn)z的函數(shù),利用二次函數(shù)的性質(zhì)求解年利潤(rùn)的最大值.

試題解析:

(1)選

(2)令,

由表可知:

所以關(guān)于的回歸方程為:

(3)由(2)可知:年利潤(rùn)

所以當(dāng),即時(shí), 最大.

故年宣傳費(fèi)為46.24千元時(shí),年利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四棱錐中,底面是正方形,

1)如圖2,設(shè)點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),求證: 平面

2)已知網(wǎng)格紙上小正方形的邊長(zhǎng)為,請(qǐng)你在網(wǎng)格紙上用粗線畫(huà)圖1中四棱錐的府視圖(不需要標(biāo)字母),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)橢圓的離心率為,是橢圓的右焦點(diǎn)直線的斜率為,為坐標(biāo)原點(diǎn)

(1)求的方程;

(2)設(shè)過(guò)點(diǎn)的動(dòng)直線相交于,兩點(diǎn),當(dāng)的面積最大時(shí),的直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)).

I)設(shè)相交于兩點(diǎn),求;

II)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線.設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,平行于軸的兩條直線分別交兩點(diǎn),交的準(zhǔn)線于兩點(diǎn) .

(1)若在線段上,的中點(diǎn),證明;

(2)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用兩種原料,已知每種產(chǎn)品各生產(chǎn)噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)噸甲產(chǎn)品可獲利潤(rùn)3萬(wàn)元,生產(chǎn)噸乙產(chǎn)品可獲利萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為___________萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶八中大學(xué)城校區(qū)與本部校區(qū)之間的駕車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對(duì)其容量為500的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如下:

(分鐘)

25

30

35

40

頻數(shù)(次)

100

150

200

50

以這500次駕車單程所需時(shí)間的頻率代替某人1次駕車單程所需時(shí)間的概率.

(1)求的分布列與

(2)某天有3位教師獨(dú)自駕車從大學(xué)城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時(shí)間少于的人數(shù),求的分布列與;

(3)下周某天老師將駕車從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求老師從離開(kāi)大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時(shí)間不超過(guò)120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知函數(shù)(其中為參數(shù)).

(1)當(dāng)時(shí),證明:不是奇函數(shù);

(2)如果是奇函數(shù),求實(shí)數(shù)的值;

(3)已知,在(2)的條件下,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)共有1000名文科學(xué)生參加了該市高三第一次質(zhì)量檢查的考試,其中數(shù)學(xué)成績(jī)?nèi)缦卤硭荆?/span>

數(shù)學(xué)成績(jī)分組

[50,70)

[70,90)

[90,110)

[110,130)

[130,150]

人數(shù)

60

400

360

100

(Ⅰ)為了了解同學(xué)們前段復(fù)習(xí)的得失,以便制定下階段的復(fù)習(xí)計(jì)劃,年級(jí)將采用分層抽樣的方法抽取100

名同學(xué)進(jìn)行問(wèn)卷調(diào)查. 甲同學(xué)在本次測(cè)試中數(shù)學(xué)成績(jī)?yōu)?5分,求他被抽中的概率;

(Ⅱ)年級(jí)將本次數(shù)學(xué)成績(jī)75分以下的學(xué)生當(dāng)作“數(shù)學(xué)學(xué)困生”進(jìn)行輔導(dǎo),請(qǐng)根據(jù)所提供數(shù)據(jù)估計(jì)“數(shù)

學(xué)學(xué)困生”的人數(shù);

(III)請(qǐng)根據(jù)所提供數(shù)據(jù)估計(jì)該學(xué)校文科學(xué)生本次考試的數(shù)學(xué)平均分.

查看答案和解析>>

同步練習(xí)冊(cè)答案