已知函數f(x)=在點(-1,f(-1))處的切線方程為x+y+3=0.
(1)求函數f(x)的解析式.
(2)設g(x)=lnx.求證:g(x)≥f(x)在[1,+∞)上恒成立.
科目:高中數學 來源: 題型:解答題
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數a的取值范圍;
(3)證明對一切x∈(0,+∞),都有l(wèi)nx>-成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設f(x)=x3+ax2+bx+1的導數f′(x)滿足f′(1)=
2a,f′(2)=-b,其中a,b∈R.
①求曲線y=f(x)在點(1,f(1))處的切線方程;②設g(x)=f′(x)e-x,求g(x)的極值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數在處取得極小值.
(1)若函數的極小值是,求;
(2)若函數的極小值不小于,問:是否存在實數,使得函數在上單調遞減?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=aln(2x+1)+bx+1.
(1)若函數y=f(x)在x=1處取得極值,且曲線y=f(x)在點(0,f(0))處的切線與直線2x+y-3=0平行,求a的值;
(2)若b=,試討論函數y=f(x)的單調性.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com